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1. Introduction



Can we consistently quantize string field theory?

• clue to fundamental degrees of freedom of string theory

• open strings versus closed strings

Open bosonic string field theory and closed bosonic string field theory
have been quantized based on the Batalin-Vilkovisky formalism.

However, the quantization of the bosonic string is formal because of the
presence of tachyons.

How about the quantization of superstring field theory?
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Among various formulations of superstring field theory, the Berkovits
formulation for the Nevue-Schwarz (NS) sector of open superstring field
theory has been quite successful.

The Berkovits formulation is based on the large Hilbert space of the
superconformal ghost sector.

The quantization based on the Batalin-Vilkovisky formalism, however,
has turned out to be formidably complicated.

Why is it so complicated?
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In bosonic string field theory, the equation of motion and the gauge
transformation can both be written in terms of the same set of string
products.

The string products satisfy the set of relations called A∞ for the open
string and L∞ for the closed string.

These structures play a crucial role in the Batalin-Vilkovisky quantiza-
tion, and they are closely related to the decomposition of the moduli
space of Riemann surfaces.
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The source of the difficulty for the Batalin-Vilkovisky quantization in the
Berkovits formulation can be seen in the free theory.

The equation of motion:
QηΦ = 0 .

Φ: the open superstring field in the large Hilbert space,
Q: the BRST operator,
η: the zero mode of the superconformal ghost η(z).

The gauge transformations:

δΦ = QΛ + ηΩ .

Λ, Ω: the gauge parameters.

The difference of the structure between QηΦ = 0 and δΦ = QΛ+ηΩ can
be thought of as the source of the difficulty.
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Working in the large Hilbert space obscures the relation to the super-
moduli space of super-Riemann surfaces, and it might be one possible
reason underlying the difficulty.

Approaches to incorporating the Ramond sector are also complicated (see
the talk by Kunitomo san), and it might also be related to our insufficient
understanding of the connection between the large Hilbert space and the
supermoduli space of super-Riemann surfaces.
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What was the difficulty in formulating open superstring field theory based
on the small Hilbert space? Consider the free theory.

The equation of motion: QΨ = 0 .

Ψ: the open superstring field in the small Hilbert space

The gauge transformation: δΨ = QΛ .

Λ: the gauge parameter.

They are both written in terms of Q, and this seems to be promising for
constructing string products satisfying the A∞ relations.

It had long been thought, however, that a regular formulation based on
the small Hilbert space would be difficult because of singularities coming
from local picture-changing operators.
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Recently, it was demonstrated that a regular formulation based on
the small Hilbert space can be obtained from the Berkovits formulation
by partial gauge fixing.

Iimori, Noumi, Okawa and Torii, arXiv:1312.1677

New ingredient: an operator ξ satisfying { η, ξ } = 1 . Such an operator
can be realized by a line integral of the superconformal ghost ξ(z).

• The partial gauge fixing guarantees that the resulting theory is
gauge invariant.

• The BRST transformation of ξ yields a line integral of the picture-
changing operator, and singularities associated with local picture-
changing operators are avoided in this approach.

• However, it turned out that the resulting theory does not exhibit
the A∞ structure.
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Once we recognize that ξ can be used in constructing a guage-invariant
action, we do not necessarily start from the Berkovits formulation.

Erler, Konopka and Sachs constructed an action with the A∞ structure
for the NS sector of open superstring field theory based on the small
Hilbert space using ξ as a new ingredient.

Erler, Konopka and Sachs, arXiv:1312.2948

• Because of the A∞ structure, the Batalin-Vilkovisky quantization
is straightforward.

• The construction was further generalized to the NS sector of het-
erotic string field theory and the NS-NS sector of type II superstring
field theory. (See the talk by Matsunaga kun.)

Erler, Konopka and Sachs, arXiv:1403.0940
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We now have two successful formulations for the NS sector of open su-
perstring field theory.

• The theory by Berkovits is beautifully formulated based on
the large Hilbert space.

• The theory by Erler, Konopka and Sachs is based on the small
Hilbert space and exhibits the A∞ structure.

In this talk, we show that the two theories are related by field redefinition
and partial gauge fixing.

The talk is based on an upcoming paper with Erler and Takezaki.
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The plan of the talk

✦ 1. Introduction
✦ 2. Open bosonic string field theory
✦ 3. The Witten and Berkovits formulations
✦ 4. New formulations in the small Hilbert space
✦ 5. The A∞ structure from the Berkovits formulation



2. Open bosonic string field theory



Open bosonic string field theory
Witten, Nucl. Phys. B268 (1986) 253

S = − 1

2
〈Ψ, QΨ 〉 − g

3
〈Ψ, Ψ ∗ Ψ 〉 .

• Ψ: the open bosonic string field

• Q: the BRST operator

• g: the open string coupling constant

• 〈A,B 〉: the BPZ inner product

• A ∗ B: star product
noncommutative A ∗ B %= B ∗ A
but associative (A ∗ B) ∗ C = A ∗ (B ∗ C)
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The action is invariant under the gauge transformation given by

δΛΨ = QΛ + Ψ ∗ Λ − Λ ∗ Ψ ,

where Λ is the gauge parameter

The invariance can be shown only from

〈B,A 〉 = (−1)AB 〈A,B 〉 ,

Q2 = 0 ,

〈QA,B 〉 = − (−1)A〈A,QB 〉 ,

〈A,B ∗ C 〉 = 〈A ∗ B, C 〉 ,

(A ∗ B) ∗ C = A ∗ (B ∗ C) ,

Q (A ∗ B) = QA ∗ B + (−1)AA ∗ QB .
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Actually, we can construct a gauge-invariant action based on a string
product without associativity. Consider an action in the following form:

S = − 1

2
〈Ψ, QΨ 〉 − g

3
〈Ψ, V2(Ψ, Ψ) 〉 − g2

4
〈Ψ, V3(Ψ, Ψ, Ψ) 〉 + O(g3) .

The BRST operator Q can be thought of as a one-string product with
the cyclic property

〈A1, QA2 〉 = − (−1)A1〈QA1, A2 〉 .

V2(A1, A2): two-string product with the cyclic property

〈A1, V2(A2, A3) 〉 = 〈V2(A1, A2), A3) 〉 .

V3(A1, A2, A3): three-string product with the cyclic property

〈A1, V3(A2, A3, A4) 〉 = − (−1)A1〈V3(A1, A2, A3), A4) 〉 .
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The action is invariant up to O(g3),

δΛS = O(g3) ,

under the gauge transformation in the form

δΛΨ = QΛ + g
(
V2(Ψ, Λ) − V2(Λ, Ψ)

)

+ g2
(
V3(Ψ, Ψ, Λ) − V3(Ψ, Λ, Ψ) + V3(Λ, Ψ, Ψ)

)
+ O(g3)

if Q, V2, and V3 satisfy

Q2A1 = 0 ,

QV2(A1, A2) − V2(QA1, A2) − (−1)A1V2(A1, QA2) = 0 ,

QV3(A1, A2, A3) − V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3))

+ V3(QA1, A2, A3) + (−1)A1V3(A1, QA2, A3)

+ (−1)A1+A2V3(A1, A2, QA3) = 0 .
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• These relations of multi-string products are extended to higher
orders, and a set of these relations is called the A∞ structure.

• The A∞ structure is closely related to the decomposition
of the moduli space of Riemann surfaces.

• The quantization of string field theory based on the Batalin-Vilkovisky
formalism is straightforward if the theory has the A∞ structure.
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3. The Witten and Berkovits
 formulations



In the Ramond-Neveu-Schwarz formalism of the superstring, there are
infinitely many ways to describe each physical state, and they are labeled
by a quantum number called picture.

In tree-level scattering amplitudes of the open superstring, the sum of
the picture numbers of external states has to be −2.

e.g. four-point amplitudes of bosons
We can choose two states to be in the −1 picture and two states to be
in the 0 picture.

On-shell scattering amplitudes do not depend on a choice of pictures, but
how should we deal with the picture in string field theory?

15



Physical states in different pictures are mapped by the picture-changing
operator X(z):

Ψ(0)(w) = lim
z→w

X(z) Ψ(−1)(w) ,

where
[ Q, X(z) ] = 0 .

e.g. four-point amplitudes
We can choose all the four states to be in the −1 picture and insert two
picture-changing operators.
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The Witten formulation Nucl. Phys. B276 (1986) 291

The open superstring field is in the −1 picture.

Choose the two-string product to be

V2(A1, A2) = Xmid (A1 ∗ A2) .

Xmid: the picture-changing operator inserted at the open-string
midpoint.

The operator product expansion of two picture-changing operators
is singular.

divergences in the gauge variation of the action
and in four-point amplitudes
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The Berkovits formulation hep-th/9503099

open superstring field:
a state in the matter + bc ghost + superconformal ghost CFT

the superconformal ghost sector
β(z) γ(z) → ξ(z), η(z),φ(z)

The Hilbert space for ξ(z), η(z),φ(z) is larger and is called
the large Hilbert space.

The Hilbert space we usually use for βγ ghosts is called
the small Hilbert space.

Ψ ∈ the small Hilbert space ⇐⇒ ηΨ = 0

η: the zero mode of η(z)
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Algebraic relations in the large Hilbert space

〈B,A 〉 = (−1)AB 〈A,B 〉 ,

Q2 = 0 , η2 = 0 , {Q, η } = 0 ,

〈QA,B 〉 = − (−1)A〈A,QB 〉 ,

〈 ηA,B 〉 = − (−1)A〈A, ηB 〉 ,

〈A,B ∗ C 〉 = 〈A ∗ B, C 〉 ,

(A ∗ B) ∗ C = A ∗ (B ∗ C) ,

Q (A ∗ B) = QA ∗ B + (−1)AA ∗ QB ,

η (A ∗ B) = ηA ∗ B + (−1)AA ∗ ηB .
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How large is the large Hilbert space?

η2 = 0 and ∃ξ satisfying { η, ξ } = 1 .

A state Φ in the large Hilbert space can be decomposed as follows:

Φ = ηξΦ + ξηΦ = Ψ1 + ξΨ2 .

Ψ1, Ψ2 ∈ the small Hilbert space

We could say that the large Hilbert space is twice as large as the small
Hilbert space.

We can realize ξ by a line integral of ξ(z), and we assume that ξ obeys
ξ2 = 0 and 〈A, ξB 〉 = (−1)A〈 ξA, B 〉. We can choose, for example, ξ to
be the zero mode ξ0 of ξ(z).
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The BPZ inner products

For a pair of string fields A and B in the small Hilbert space, we define
〈〈A,B 〉〉 by

〈〈A,B 〉〉 = 〈 ξ0A,B 〉 .

We can use ξ to relate the two BPZ inner products as

〈〈A,B 〉〉 = 〈 ξA, B 〉 .
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The action of the free theory in the Berkovits formulation:

S = − 1

2
〈Φ, QηΦ 〉 .

Φ: the open superstring field in the large Hilbert space

The equation of motion: QηΦ = 0 .
The gauge transformations: δΦ = QΛ + ηΩ .

Λ, Ω: gauge parameters in the large Hilbert space

By the gauge transformation δΦ = ηΩ ,

Φ = ηξΦ + ξηΦ Φ = ξΨ

Ψ ∈ the small Hilbert space

The equation of motion reduces to

QηΦ = QηξΨ = Q { η, ξ}Ψ = QΨ = 0 .
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The action of the interacting theory:

S = − 1

2
〈Φ, QηΦ 〉 +

g

6
〈 ηΦ, [ Φ, QΦ ] 〉

− g2

24
〈 ηΦ, [ Φ, [ Φ, QΦ ] ] 〉 + O(g3) .

The nonlinearly extended gauge transformations:

δΦ = QΛ − g

2
[ Φ, QΛ ] +

g2

12
[ Φ, [ Φ, QΛ ] ]

+ ηΩ +
g

2
[ Φ, ηΩ ] +

g2

12
[ Φ, [ Φ, ηΩ ] ] + O(g3) .

(Here and in what follows, we often omit the star symbol for the star
product.)

The action to all orders in g is written in a Wess-Zumino-Witten-like
(WZW-like) form.
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• The correct four-point amplitudes of bosons are reproduced.

• The Ramond sector: considerably complicated and not completely
covariant (covariant, however, for a class of interesting backgrounds
such as D3-branes) See also the talk by Kunitomo san.

• The Batalin-Vilkovisky formalism for quantization: formidably com-
plicated

Working in the large Hilbert space obscures the relation to the super-
moduli space of super-Riemann surfaces.
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4. New formulations
 in the small Hilbert space



Partial gauge fixing
Iimori, Noumi, Okawa and Torii, arXiv:1312.1677

In the Berkovits formulation, we can impose the following condition for
partial gauge fixing in the interacting theory:

ξΦ = 0 .

The open superstring field Φ satisfying this condition can be written as

Φ = ξΨ with Ψ ∈ the small Hilbert space.

Replace Φ in the action S[ Φ ] of the Berkovits formulation by ξΨ, and
regard S[ ξΨ ] as an action for Ψ. The resulting theory for Ψ is guaranteed
to be invariant under the residual gauge transformation.

This provides a consistent formulation
based on the small Hilbert space!
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When QΨ = 0, the cubic interaction

1

6
〈Ψ, ξΨ ∗ QξΨ 〉 − 1

6
〈Ψ, QξΨ ∗ ξΨ 〉

reduces to

− 1

3
〈〈XΨ, Ψ ∗ Ψ 〉〉 ,

where X = {Q, ξ }, which is a line integral of the picture-changing oper-
ator X(z)

We have learned that we can use a line integral ξ in the construction of
a gauge-invariant action to obtain a regular formulation without singu-
larities coming from local picture-changing operators.

The resulting theory based on the small Hilbert space, however, does not
exhibit the A∞ structure.
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Open superstring field theory with the A∞ structure
Erler, Konopka and Sachs, arXiv:1312.2948

The two-string product

V2(A1, A2) =
1

3

[
X(A1A2) + (XA1)A2 + A1(XA2)

]

satisfies
〈A1, V2(A2, A3) 〉 = 〈V2(A1, A2), A3) 〉

and
QV2(A1, A2) − V2(QA1, A2) − (−1)A1V2(A1, QA2) = 0 ,

but V2 is not associative. We need a three-string product V3 satisfying

QV3(A1, A2, A3) − V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3))

+ V3(QA1, A2, A3) + (−1)A1V3(A1, QA2, A3)

+ (−1)A1+A2V3(A1, A2, QA3) = 0 .
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Erler, Konopka and Sachs constructed V3(A1, A2, A3) satisfying this re-
lation from the star product, ξ, and X.

Furthermore, they extended the construction to higher orders and suc-
ceeded in constructing an action of open superstring field theory based
on the small Hilbert space with the A∞ structure!

How did they construct multi-string products satisfying the A∞ rela-
tions?

The two-string product can be written as

V2(A1, A2) = QV ξ
2 (A1, A2) + V ξ

2 (QA1, A2) + (−1)A1V ξ
2 (A1, QA2)

with

V ξ
2 (A1, A2) =

1

3

[
ξ(A1A2) + (ξA1)A2 + (−1)A1A1(ξA2)

]
.
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In general, if the two-string product V2(A1, A2) is written as

V2(A1, A2) = QV ξ
2 (A1, A2) + V ξ

2 (QA1, A2) + (−1)A1V ξ
2 (A1, QA2) ,

and V ξ
2 (A1, A2) satisfies

〈A1, V
ξ
2 (A2, A3) 〉 = (−1)A1 〈V ξ

2 (A1, A2), A3) 〉 ,

the conditions

〈A1, V2(A2, A3) 〉 = 〈V2(A1, A2), A3) 〉

and
QV2(A1, A2) − V2(QA1, A2) − (−1)A1V2(A1, QA2) = 0

are satisfied.
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However, the cubic interaction

− 1

3
〈〈Ψ, V2(Ψ, Ψ) 〉〉

can be generated from the free theory by field redefinition
if ηV ξ

2 (Ψ, Ψ) = 0 .

To obtain an interacting theory, we need

ηV ξ
2 (A1, A2) + V ξ

2 (ηA1, A2) + (−1)A1V ξ
2 (A1, ηA2) $= 0 ,

while the condition

ηV2(A1, A2) − V2(ηA1, A2) − (−1)A1V2(A1, ηA2) = 0

is satisfied.
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This can be achieved if V ξ
2 satisfies

ηV ξ
2 (A1, A2) + V ξ

2 (ηA1, A2) + (−1)A1V ξ
2 (A1, ηA2) = A1A2 ,

and V ξ
2 (A1, A2) satisfying this relation can be constructed using ξ because

the cohomology of η is trivial.

As we said before, the two-string product V2 is not associative and we
need V3 satisfying

QV3(A1, A2, A3) − V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3))

+ V3(QA1, A2, A3) + (−1)A1V3(A1, QA2, A3)

+ (−1)A1+A2V3(A1, A2, QA3) = 0 .

31



This relation is satisfied if V3 is written in terms of V ξ
2 and V ξξ

3 as

V3(A1, A2, A3)

=
1

2

[
QV ξξ

3 (A1, A2, A3) − V ξξ
3 (QA1, A2, A3)

− (−1)A1V ξξ
3 (A1, QA2, A3) − (−1)A1+A2V ξξ

3 (A1, A2, QA3)

+ QV ξ
2 (V ξ

2 (A1, A2), A3) − (−1)A1QV ξ
2 (A1, V

ξ
2 (A2, A3))

+ 2 V ξ
2 (QV ξ

2 (A1, A2), A3) − 2 V ξ
2 (A1, QV ξ

2 (A2, A3))

+ V ξ
2 (V ξ

2 (QA1, A2), A3) + (−1)A1V ξ
2 (V ξ

2 (A1, QA2), A3)

− (−1)A1+A2V ξ
2 (V ξ

2 (A1, A2), QA3) − (−1)A1V ξ
2 (QA1, V

ξ
2 (A2, A3))

− V ξ
2 (A1, V

ξ
2 (QA2, A3)) − (−1)A2V ξ

2 (A1, V
ξ
2 (A2, QA3))

]
.
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To ensure that the condition

ηV3(A1, A2, A3) + V3(ηA1, A2, A3) + (−1)A1V3(A1, ηA2, A3)

+ (−1)A1+A2V3(A1, A2, ηA3) = 0

is satisfied, V ξ
2 and V ξξ

3 have to be related as

ηV ξξ
3 (A1, A2, A3) − V ξξ

3 (ηA1, A2, A3)

− (−1)A1V ξξ
3 (A1, ηA2, A3) − (−1)A1+A2V ξξ

3 (A1, A2, ηA3)

= V ξ
2 (A1, A2) A3 − (−1)A1A1 V ξ

2 (A2, A3)

+ V ξ
2 (A1A2, A3) − V ξ

2 (A1, A2A3) .

We can construct V ξξ
3 (A1, A2, A3) satisfying this relation because the co-

homology of η is trivial.
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For V ξ
2 given by

V ξ
2 (A1, A2) =

1

3

[
ξ(A1A2) + (ξA1)A2 + (−1)A1A1(ξA2)

]
,

one realization of V ξξ
3 is

V ξξ
3 (A1, A2, A3)

=
1

6

[
ξ((ξ(A1A2)) A3) − (−1)A1ξ(A1 (ξ(A2A3)))

− (ξ((ξA1)A2))) A3 − (−1)A1(ξA1) (ξ(A2A3))

− (−1)A1(ξ(A1(ξA2))) A3 + A1 (ξ((ξA2)A3))

− (−1)A1+A2(ξ(A1A2)) (ξA3) + (−1)A2A1 (ξ(A2(ξA3)))
]
.

This construction can be extended to all orders.

What is the relation to the Berkovits formulation based on the large
Hilbert space?

34



5. The A∞ structure
 from

 the Berkovits formulation



The WZW-like action of the Berkovits formulation is

S = − 1

2
〈 e−Φ(ηeΦ), e−Φ(QeΦ) 〉

−
∫ 1

0

dt 〈 e−Φ(t)∂te
Φ(t), { e−Φ(t)(QeΦ(t)), e−Φ(t)(ηeΦ(t)) } 〉 ,

where Φ(1) = Φ and Φ(0) = 0. This can also be written as

S = −
∫ 1

0

dt 〈At(t), QAη(t) 〉

with
Aη(t) = (η eΦ(t)) e−Φ(t) , At(t) = (∂te

Φ(t)) e−Φ(t) .
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The t-dependence is topological:

δ 〈At(t), QAη(t) 〉 = ∂t 〈At(t), QAη(t) 〉 .

The topological t-dependence and the gauge invariance follow from

ηAη(t) = Aη(t)Aη(t) ,

∂tAη(t) = ηAt(t) − Aη(t)At(t) + At(t)Aη(t)

together with the fact that the cohomology of η is trivial.
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To describe the A∞ structure, it is convenient to introduce
degree for a string field A denoted by deg(A). It is defined by

deg(A) = ε(A) + 1 mod 2 ,

where ε(A) is the Grassmann parity of A.

We define ω(A1, A2), ωL(A1, A2), M2(A1, A2), M3(A1, A2, A3) by

ω(A1, A2) = (−1)deg(A1)〈〈A, B 〉〉 ,

ωL(A1, A2) = (−1)deg(A1)〈A,B 〉 ,

M2(A1, A2) = (−1)deg(A1) V2(A1, A2) ,

M3(A1, A2, A3) = (−1)deg(A2) V3(A1, A2, A3) .
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It is further convenient to introduce linear operators called coderivatons
acting on the vector space TH defined by

TH = C ⊕H⊕H⊗2 ⊕H⊗3 ⊕ . . . ,

where H is the Hilbert space.

String products are promoted to coderivations as follows. For the BRST
operator as a one-string product, we have

Q 1 = 0 ,

QA1 = QA1 ,

Q ( A1 ⊗ A2 ) = QA1 ⊗ A2 + (−1)deg(A1)A1 ⊗ QA2 ,

Q ( A1 ⊗ A2 ⊗ A3 ) = QA1 ⊗ A2 ⊗ A3 + (−1)deg(A1)A1 ⊗ QA2 ⊗ A3

+ (−1)deg(A1)+deg(A2)A1 ⊗ A2 ⊗ QA3 ,
...
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For the two-string product M2, we have

M2 1 = 0 ,

M2 A1 = 0 ,

M2 ( A1 ⊗ A2 ) = M2(A1, A2) ,

M2 ( A1 ⊗ A2 ⊗ A3 ) = M2(A1, A2) ⊗ A3

+ (−1)deg(A1)A1 ⊗ M2(A2, A3) ,

M2 ( A1 ⊗ A2 ⊗ A3 ⊗ A4 ) = M2(A1, A2) ⊗ A3 ⊗ A4

+ (−1)deg(A1)A1 ⊗ M2(A2, A3) ⊗ A4 ,

+ (−1)deg(A1)+deg(A2)A1 ⊗ A2 ⊗ M2(A3, A4) ,
...
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For the three-string product M3, we have

M3 1 = 0 ,

M3 A1 = 0 ,

M3 ( A1 ⊗ A2 ) = 0 ,

M3 ( A1 ⊗ A2 ⊗ A3 ) = M3(A1, A2, A3) ,

M3 ( A1 ⊗ A2 ⊗ A3 ⊗ A4 ) = M3(A1, A2, A3) ⊗ A4

+ (−1)deg(A1)A1 ⊗ M3(A2, A3, A4) ,
...
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We introduce M(s) defined by

M(s) =
∞∑

n=0

sn Mn+1 with M1 = Q .

Then the A∞ relations can be compactly written as

[M(s),M(s) ] = 0 .

The condition that Mn(Ψ, Ψ, . . . , Ψ) is in the small Hilbert space can be
stated as

[ η,M(s) ] = 0 .
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We construct M(s) from the star product. We define m2(A1, A2) by

m2(A1, A2) = (−1)deg(A1)A1A2 ,

and the corresponding coderivation m2 satisfy

[m2,m2 ] = 0 , [Q,m2 ] = 0 , [ η,m2 ] = 0 .

In arXiv:1312.2948 by Erler, Konopka and Sachs, M(s) was characterized
by the following differential equation:

d

ds
M(s) = [M(s), µ(s) ] with M(0) = Q .

Its solution is
M(s) = G−1(s)QG(s) ,

where G(s) is the path-ordered exponential given by

G(s) = P exp

[ ∫ s

0

ds′ µ(s′)

]
.
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If [ η, µ(s) ] = 0, the resulting theory is related to the free theory by
field redefinition. To obtain a nontrivial interacting theory, we need
[ η, µ(s) ] != 0, while [ η,M(s) ] = 0 is satisfied.

In arXiv:1312.2948 by Erler, Konopka and Sachs, µ(s) was characterized
by

[ η, µ(s) ] = m(s) ,

and
d

ds
m(s) = [m(s),µ(s) ] with m(0) = m2 .

From these relations, we can show [ η,G(s) ] = sm2 G(s) , and the con-
dition [ η,M(s) ] = 0 is shown to be satisfied.

To summarize, we have the following important relations:

M = G−1 QG , [ η,G ] = m2 G ,

where M = M(1) , G = G(1) .
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The action with the A∞ structure can be written as

S = − 1

2
ω(Ψ, QΨ) − 1

3
ω(Ψ,M2(Ψ, Ψ)) − 1

4
ω(Ψ,M3(Ψ, Ψ, Ψ)) + . . .

= −
∫ 1

0

dt

[
ω(Ψ, Q tΨ) + ω(Ψ,M2(tΨ, tΨ)) + ω(Ψ,M3(tΨ, tΨ, tΨ)) + . . .

]

= −
∫ 1

0

dtω
(

Ψ,π1M
1

1 − tΨ

)
,

where

1

1 − Ψ
=

∞∑

n=0

Ψ ⊗ Ψ ⊗ . . . ⊗ Ψ︸ ︷︷ ︸
n

= 1 + Ψ + Ψ ⊗ Ψ + Ψ ⊗ Ψ ⊗ Ψ . . .

and π1 is the projector to the one-string sector.

44



In terms of ωL in the large Hilbert space, we have

S =

∫ 1

0

dtωL

(
ξΨ,π1M

1

1 − tΨ

)

=

∫ 1

0

dtωL

(
π1 ξt

1

1 − tΨ
,π1M

1

1 − tΨ

)
,

where ξt is the coderivation corresponding to ξ∂t .

When µ(s) has an appropriate cyclic property, we find

S =

∫ 1

0

dtωL

(
π1 ξt

1

1 − tΨ
,π1 G−1 QG

1

1 − tΨ

)

=

∫ 1

0

dtωL

(
π1 G ξt

1

1 − tΨ
, Q π1G

1

1 − tΨ

)
.
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The action now takes the form

S = −
∫ 1

0

dt 〈At(t), QAη(t) 〉

with

Aη(t) = π1 G
1

1 − tΨ
, At(t) = π1 G ξt

1

1 − tΨ
,

and we can show that Aη(t) and At(t) satisfy

ηAη(t) = Aη(t)Aη(t) ,

∂tAη(t) = ηAt(t) − Aη(t)At(t) + At(t)Aη(t) .
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We can further show

Aη(t) = π1 G
1

1 − Ψ(t)
, At(t) = π1 G ξt

1

1 − Ψ(t)

satisfy

ηAη(t) = Aη(t)Aη(t) ,

∂tAη(t) = ηAt(t) − Aη(t)At(t) + At(t)Aη(t) .

• The dependence on t is topological.

• We can show that the theory with the A∞ structure is related by
field redefinition to the theory obtained from the Berkovits formu-
lation by partial gauge fixing.
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Furthermore, Aη(t) and At(t) can be interpreted as being obtained from

Aη(t) = π1 G
1

1 − η Φ(t)
,

At(t) = π1 G

(
1

1 − η Φ(t)
⊗ ∂tΦ(t) ⊗ 1

1 − η Φ(t)

)

by the partial gauge fixing Φ = ξΨ .

The theory with the A∞ structure can be embedded in a theory based
on the large Hilbert space, which is related to the Berkovits formulation
by field redefinition.
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Φ!"
#$field redefinition

!" Φ̃!"
#$

partial gauge fixing

#

partial gauge fixing

#

Ψ!"
#$

Ψ̃!"
#$

field redefinition

!"
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Future directions

• Extension to the closed string:
heterotic string field theory and type II superstring field theory

• The relation to the supermoduli space of super-Riemann surfaces
Ohmori and Okawa, in preparation.

• Extension to the Ramond sector.
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