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SFT map: 2014 March

N = 0 theoriesから N = 1, 2 small-space theoriesが作れる：正則化のためには無限個の vertices

が必要だった！しかも classical BV formalism にのる：仕組みは N = 0 と完全に等価。
SFT map: Today

N = 2 large-space theories も作れる：N = 1 small-space theories から出発すればよい。

今回の talk の目的は以下を説明する事。N = 0 theories から N = 2 large-space theories を
単純な方法で構成するのは難しかった。しかし、N = 1 small-space theories から単純な方法で
N = 2 large-space theories が構成できる！そのように作った N = 2 theories は、[N = 0 to 2] と
いう試みの未整理な点を自然にカバーするようなものとなっている。

Plan of Today’s talk:

1) Review of N = 0 SFT and recent developments

2) WZW-like formulation

3) NS-NS action

2 Part 2 (20 minutes)

2.1 Review of SFT

Witten’s Cubic theory

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,Ψ ∗Ψ⟩ (2.3)

EOM

QΨ+Ψ2 = 0 (2.4)

Nonlinear gauge transformations

δΨ = QΛ+ [[Ψ,Λ]] (2.5)

Pure-gauge solution

e−ΛQeΛ : Q
(
e−ΛQeΛ

)
+

(
e−ΛQeΛ

)
∗
(
e−ΛQeΛ

)
(2.6)

=
(
Qe−Λ

)
∗
(
QeΛ

)
−
(
Qe−Λ

)
eΛ ∗ eΛ

(
QeΛ

)
= 0 (2.7)

where

Q · I = Q
(
e−Λ ∗ eΛ

)
= 0 i.e. e−Λ

(
QeΛ

)
= −

(
Qe−Λ

)
eΛ (2.8)

Two important points:

1) Gauge (BRST in BV) invariance = (Q+M)2 = 0

2

	

	

	

〜 	

	

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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1 Part 1 (15 minutes)

1.1 What is string field theory?

String field

Ψ = T (x)c−1|0⟩+Aµ(x)a
µ
−1c−1|0⟩+ . . . (1.1)

BPZ inner product vanishes except for 3

String Field Ψ and BRST operator Q has ghost number 1

V(z) = c(z)ek·X

V(z) = c(z)δ(γ)Vm

(1|− 1)

V(z) = ξ(z)ce−φVm

(0|0)

1.2 Introduction to Today’s talk

SFT map: Since 1985, 1993, 1995, 2004

N = 0 theories はよく分かってる。N = 1 small-space theories は単純には作れない？：singular

or Not gauge invariant。N = 1 large-space theories ならば作れる！
SFT map: 2014 March

N = 0 theoriesから N = 1, 2 small-space theoriesが作れる：正則化のためには無限個の vertices

が必要だった！しかも classical BV formalism にのる：仕組みは N = 0 と完全に等価。
SFT map: Today

N = 2 large-space theories も作れる：N = 1 small-space theories から出発すればよい。

今回の talk の目的は以下を説明する事。N = 0 theories から N = 2 large-space theories を
単純な方法で構成するのは難しかった。しかし、N = 1 small-space theories から単純な方法で
N = 2 large-space theories が構成できる！そのように作った N = 2 theories は、[N = 0 to 2] と
いう試みの未整理な点を自然にカバーするようなものとなっている。

Plan of Today’s talk:

1) Review of N = 0 SFT and recent developments

2) WZW-like formulation

3) NS-NS action
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2.1 Review of SFT

Witten’s Cubic theory

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,Ψ ∗Ψ⟩ (2.2)

EOM

QΨ+Ψ2 = 0 (2.3)

Nonlinear gauge transformations

δΨ = QΛ+ [[Ψ,Λ]] (2.4)

Pure-gauge solution

e−ΛQeΛ : Q
(
e−ΛQeΛ

)
+

(
e−ΛQeΛ

)
∗
(
e−ΛQeΛ

)
(2.5)

=
(
Qe−Λ

)
∗
(
QeΛ

)
−
(
Qe−Λ

)
eΛ ∗ eΛ

(
QeΛ

)
= 0 (2.6)

where

Q · I = Q
(
e−Λ ∗ eΛ

)
= 0 i.e. e−Λ

(
QeΛ

)
= −

(
Qe−Λ

)
eΛ (2.7)

Two important points:

1) Gauge (BRST in BV) invariance = (Q+M)2 = 0

Note that ω is a symplectic form and M is a string product

ω(Ψ1,Ψ2) = (−)Ψ1+1⟨Ψ1,Ψ2⟩ (2.8)

M(Ψ1,Ψ2) = (−)Ψ1+1Ψ1 ∗Ψ2 (2.9)

Then, the action becomes

S =
1

2
ω(Ψ, QΨ) +

1

3
ω
(
Ψ,M(Ψ,Ψ)

)
(2.10)
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SFT map: 2014 March

N = 0 theoriesから N = 1, 2 small-space theoriesが作れる：正則化のためには無限個の vertices

が必要だった！しかも classical BV formalism にのる：仕組みは N = 0 と完全に等価。
SFT map: Today

N = 2 large-space theories も作れる：N = 1 small-space theories から出発すればよい。

今回の talk の目的は以下を説明する事。N = 0 theories から N = 2 large-space theories を
単純な方法で構成するのは難しかった。しかし、N = 1 small-space theories から単純な方法で
N = 2 large-space theories が構成できる！そのように作った N = 2 theories は、[N = 0 to 2] と
いう試みの未整理な点を自然にカバーするようなものとなっている。
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)
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3
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4
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5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)
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Free action

S =
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2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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1.2 Introduction to Today’s talk

SFT map: Since 1985, 1993, 1995, 2004

N = 0 theories はよく分かってる。N = 1 small-space theories は単純には作れない？：singular

or Not gauge invariant。N = 1 large-space theories ならば作れる！
SFT map: 2014 March

N = 0 theoriesから N = 1, 2 small-space theoriesが作れる：正則化のためには無限個の vertices

が必要だった！しかも classical BV formalism にのる：仕組みは N = 0 と完全に等価。
SFT map: Today

N = 2 large-space theories も作れる：N = 1 small-space theories から出発すればよい。

今回の talk の目的は以下を説明する事。N = 0 theories から N = 2 large-space theories を
単純な方法で構成するのは難しかった。しかし、N = 1 small-space theories から単純な方法で
N = 2 large-space theories が構成できる！そのように作った N = 2 theories は、[N = 0 to 2] と
いう試みの未整理な点を自然にカバーするようなものとなっている。

Plan of Today’s talk:

1) Review of N = 0 SFT and recent developments

2) WZW-like formulation

3) NS-NS action
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)
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3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.36)

Small and Large

ηΦ = φ (3.37)

EOM

QηΦ = 0 (3.38)

Gauge invariance

δΦ = QΛ+ ηΩ (3.39)

δΦ = QGΛ+ ηΩ (3.40)

NS open SFT

S =
1

2
⟨e−ΦQeΦ, e−ΦηeΦ⟩+ 1

2

∫ 1

0
dt⟨e−tΦ∂te

tΦ,
[[
e−tΦQetΦ, e−tΦηetΦ

]]
⟩ (3.41)

NS string field Φ has ghost and picture number (0|0). BPZ inner product ⟨A,B⟩ vanishes except
for (2|− 1).

EOM

η
(
e−ΦQeΦ

)
= 0 (3.42)

Nonlinear gauge invariance
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G(tΦ) = e−tΦQetΦ (3.44)

QG + G ∗ G = 0 (3.45)

Λ←→ Φ (3.46)

e−ΛQeΛ (3.47)
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+ ⟨Ψ,M4(Ψ
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Gauge invariance: (Q+M2 +M3 + . . . )2 = 0
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[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.25)

Small and Large

ηΦ = φ (3.26)

EOM

QηΦ = 0 (3.27)
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δΦ = QGΛ+ ηΩ (3.28)

NS open SFT

S =
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2
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2
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0
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e−ΦQeΦ
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= 0 (3.30)
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QηΦ = 0 (3.36)
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0
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EOM
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(
e−ΦQeΦ
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Computation

AX := e−tΦ
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AX , AY
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∫ 1
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dt⟨ηδA∂t , AQ⟩+ ⟨ηA∂t , δAQ⟩ (3.52)

=

∫ 1

0
dt⟨η∂tAδ, AQ⟩+ ⟨A∂t , QGAδ⟩ (3.53)
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tΦ,
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EOM

η
(
e−ΦQeΦ

)
= 0 (3.30)

4

Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.31)

G(tΦ) = e−tΦQetΦ (3.32)

QG + G ∗ G = 0 (3.33)

Λ←→ Φ (3.34)

e−ΛQeΛ (3.35)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.36)

NS closed SFT

S =

∫ 1

0
dt⟨ηV,G(tV )⟩ (3.37)

NS string field V has ghost and picture number (1|0). BPZ inner product vanishes except for

(4|− 1).

EOM

ηG(V ) = 0 (3.38)

3.2 NS-NS action

NS-NS string field Φ has ghost and picture number (0|0, 0). BPZ inner product vanishes

except for (3|− 1,−1).

S =

∫ 1

0
dt⟨η̄Ψ,GL(t)⟩ (3.39)

S = (3.40)

A formulae

QV = 0 (A.41)

⟨⟨ξξ̄V,V, XX̄V⟩⟩ (A.42)
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QηXΨ+
κ

2
[QηXΨ, ηXΨ] +O(κ2) (A.136)

S =
1

2
⟨η̄Ψ, QηΨ⟩+ κ

3!
⟨η̄Ψ,

[
XQηΨ, ηΨ

]
⟩+O(κ2) (A.137)

κ

3 · 3!⟨η̄Ψ, X
[
QηΨ, ηΨ

]
− 2

[
XQηΨ, ηΨ

]
+

[
QηΨ, XηΨ

]
⟩ (A.138)

S =
1

2
⟨η̄Ψ, QηΨ⟩+ κ

3!
⟨η̄Ψ,

[
QηΨ, ηΨ

]L⟩+O(κ2) (A.139)

δS = ⟨δΨ, η̄QηΨ⟩+ κ

2
⟨δΨ, η̄

[
QηΨ, ηΨ

]L
+

[
η̄QηΨ, ηΨ

]L⟩+O(κ2) (A.140)

δΨ = QΛ− κ
(
[QηΨ,Λ]− 1

2
[ηΨ, QΛ]

)
+O(κ2) (A.141)

QΛ+
κ

2

[
QΛ,Λ

]
+

κ2

3!

([
QΛ, QΛ,Λ

]
+

[
[QΛ,Λ],Λ

])
+ . . . (A.142)

QG := Q+
[[
e−Φ(QeΦ),

]]
(A.143)
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In section 2 of this paper we rewrite the WZW action for open superstring field theory in the non-

standard form which generalizes to heterotic string field theory. In section 3 we use this non-standard

form of the WZW action to construct an explicit action for heterotic string field theory and show that

it implies the desired equation of motion and gauge invariances. We also show that the first few terms

in the expansion of the action coincides with the terms constructed in [9]. Some of the structures

in open string field theory are absent in closed string field theory, and the non-standard form of the

WZW action does not require these additional structures. In section 4 we discuss the relationship

of our heterotic action with the more familiar form for the WZW action. Finally, in section 5 we

summarize our results and discuss some possible applications.

2 Open superstring field theory

In this section we show that the familiar action for WZW theory can be recast in a rather useful and

simple way. We then exhibit a similar recasting for the WZW open superstring field theory action.

Our construction of the heterotic string field theory action will be based on an analogous simple form.

The analysis of open superstrings in this section will use the tools that generalize to heterotic strings.

2.1 Rewriting the WZW action

Consider bosonic WZW theory on a two-dimensional compact space with coordinates z and z̄. As

usual, to write a natural action we introduce a three-dimensional space. The extra dimension can be

parametrized by a coordinate t ∈ [0, 1] and we introduce a Lie-algebra valued field Φ(t, z, z̄). The field

Φ is required to vanish at t = 0 for all z and z̄. The original two-dimensional space is obtained for

t = 1. The WZW action is written in terms of a pure-gauge connection

Ai = e−Φ (∂ie
Φ) , i = t, z, z̄ . (2.1)

By construction, this connection is flat

Fij = ∂iAj − ∂jAi + [Ai, Aj ] = 0 , (2.2)

and both Az and Az̄ vanish for t = 0. The WZW action is now given as

S =
1

2g2

∫

d2z

∫ 1

0
dt Tr

(

∂t(Az Az̄) + At[Az, Az̄]
)

. (2.3)

The integral over t can be explicitly done for the first term inside the parentheses; it gives the familiar

kinetic term defined on the original two-dimensional space. We now show that the above action can

be rewritten as

S =
1

g2

∫

d2z

∫ 1

0
dt Tr

(

(∂zAt)Az̄

)

. (2.4)

To prove this we begin with (2.3), expand the t derivatives and use the vanishing of Ftz and Ftz̄ to

trade the t derivatives for z and z̄ derivatives:

S =
1

2g2

∫

d2z

∫ 1

0
dt Tr

(

(∂zAt)Az̄ + Az(∂z̄At) + At[Az, Az̄ ]
)

. (2.5)
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Integrating by parts the z̄ derivative and using Fzz̄ = 0 we find

S =
1

2g2

∫

d2z

∫ 1

0
dt Tr

(

(∂zAt)Az̄ − (∂zAz̄)At)
)

=
1

g2

∫

d2z

∫ 1

0
dt Tr

(

(∂zAt)Az̄

)

, (2.6)

as we wanted to show.

2.2 Open superstring field theory

The WZW open superstring field theory action is given by

S = −
1

2g2

∫ 1

0
dt ⟨⟨ ∂t (Aη AQ) + At {AQ , Aη} ⟩⟩ , (2.7)

where {A,B} ≡ AB + BA. We also use [A,B] ≡ AB − BA, and more generally,

[A ,B } ≡ AB − (−1)ABBA , (2.8)

where string fields or operators in the exponent represent their Grassmann property, 0 (mod 2) if

Grassmann even and 1 (mod 2) if Grassmann odd. The double brackets in (2.7) denote correlators

defined in the large Hilbert space using the geometry of the star product and its iterated versions, and

AQ = e−Φ(t)(QeΦ(t)) , Aη = e−Φ(t)(ηeΦ(t)) , At = e−Φ(t)(∂te
Φ(t)) , (2.9)

where Φ(0) = 0 and Φ(1) ≡ Φ. Here η denotes the zero mode of the superghost field η(z). If we take

Φ(t) = tΦ, these string fields become

AQ = e−tΦ(QetΦ) , Aη = e−tΦ(ηetΦ) , At = e−tΦ(∂te
tΦ) = Φ . (2.10)

The open superstring field theory action has been usually written using this specific form of Φ(t).

The definitions in (2.9) are all of the form

AX = e−Φ(t)(XeΦ(t)) , (2.11)

where X is a derivation of the star product of open string fields, namely, X satisfies X(AB) =

(XA)B + (−1)XAA(XB) for arbitrary string fields A and B.1 Indeed, Q, η, and ∂t are derivations.

They are also derivations of the graded commutator (2.8): X[A,B} = [XA,B} + (−1)XA[A,XB}.

The string field AQ has an important interpretation. It is a pure-gauge open string field associated

with the ‘large’ gauge parameter Φ(t) in bosonic open string field theory. In this theory the equation

of motion takes the form QA + AA = 0 and the infinitesimal gauge transformations take the form

δϵA = Qϵ + [A, ϵ ]. One can readily check that AQ satisfies the string field equation of motion:

QAQ + AQAQ = 0.

If we expand the bosonic open string field theory action about AQ, the new BRST operator Q′ in

the action acts as follows:

Q′B = QB + [AQ, B } . (2.12)
1We use t for ∂t in indices. For example, At = A∂t

.
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EOM

QηΦ = 0 (3.36)

Gauge invariance

δΦ = QΛ+ ηΩ (3.37)

δΦ = QGΛ+ ηΩ (3.38)

NS open SFT

S =
1

2
⟨e−ΦQeΦ, e−ΦηeΦ⟩+ 1

2

∫ 1

0
dt⟨e−tΦ∂te

tΦ,
[[
e−tΦQetΦ, e−tΦηetΦ

]]
⟩ (3.39)

NS string field Φ has ghost and picture number (0|0). BPZ inner product ⟨A,B⟩ vanishes except
for (2|− 1).

EOM

η
(
e−ΦQeΦ

)
= 0 (3.40)

Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.41)

G(tΦ) = e−tΦQetΦ (3.42)

QG + G ∗ G = 0 (3.43)

Λ←→ Φ (3.44)

e−ΛQeΛ (3.45)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.46)

Computation

AX := e−tΦ
(
XetΦ

)
(3.47)

X = Q, η, δ, ∂t (3.48)

S =

∫ 1

0
⟨ηA∂t , AQ⟩ (3.49)

XAY − (−)XY Y AX +
[[
AX , AY

]]
= 0 (3.50)

ηAQ = −QGAη (3.51)

δS =

∫ 1

0
dt⟨ηδA∂t , AQ⟩+ ⟨ηA∂t , δAQ⟩ (3.52)

=

∫ 1

0
dt⟨η∂tAδ, AQ⟩+ ⟨A∂t , QGAδ⟩ (3.53)
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Therefore, we have

δeΦ(t) = (QΛ(t)) eΦ(t) + eΦ(t) (η Ω(t)) , (2.30)

where Λ(t) = eΦ(t)Λ′(t)e−Φ(t) is a redefined gauge parameter. This is the usual form of the gauge

transformations.

Let us next show the equivalence of this form of the action and the WZW action (2.7). In the case of

the ordinary WZW action, we used three equations: Ftz = 0, Ftz̄ = 0, and Fzz̄ = 0. Correspondingly,

we also use three equations in the case of open superstring field theory. In addition to (2.17) and

(2.19), which correspond to FtQ = 0 and FηQ = 0, respectively, we need the vanishing of Ftη:

∂tAη − ηAt + [At, Aη ] = 0 . (2.31)

Using these three equations, the integrand of the action (2.7) can be rewritten in the following way:

1

2
⟨⟨ ∂t (AηAQ) ⟩⟩ +

1

2
⟨⟨At {Aη , AQ } ⟩⟩

=
1

2
⟨⟨ ( ∂tAη + [At, Aη ] )AQ ⟩⟩ +

1

2
⟨⟨Aη (∂tAQ) ⟩⟩

=
1

2
⟨⟨ (ηAt)AQ ⟩⟩ +

1

2
⟨⟨Aη (Q′At) ⟩⟩

=
1

2
⟨⟨ (ηAt)AQ ⟩⟩ −

1

2
⟨⟨ (ηAQ)At ⟩⟩ = ⟨⟨ (ηAt)AQ ⟩⟩ . (2.32)

This completes the proof of equivalence.

We can view the construction of the action (2.15) in the following way. The action can be con-

structed from AQ, which is a pure-gauge solution of bosonic open string field theory, and At, which

satisfies the relation (2.17). The action is gauge invariant because δAQ and ηAQ are Q′ exact, and

the gauge transformations (2.28) are consistent because Aδ depends on t only through Φ(t) and δΦ(t).

Such string fields AQ, At, and Aδ can be constructed by the following procedure. First, take the

pure-gauge string field e−Φ(QeΦ) and define AQ ≡ e−Φ(t)(QeΦ(t)), where we have replaced Φ by Φ(t).

Since AQ is pure-gauge for arbitrary Φ(t), its variation can be written as an infinitesimal gauge trans-

formation: δAQ = Q′Aδ, where Aδ is the gauge parameter. Furthermore, Aδ is guaranteed to depend

on t only through Φ(t) and δΦ(t) because AQ and Q′ depend on t only through Φ(t). In open super-

string field theory, such an Aδ can be found explicitly and is given by e−Φ(t)(δ eΦ(t)). The verification

that this expression for Aδ satisfies δAQ = Q′Aδ relies only on the derivation property of δ and the

commutativity of δ and Q. Since ∂t and η are also derivations that commute or anticommute with Q,

one can construct At and Aη satisfying (2.17) and (2.19) by simply replacing δ in Aδ with ∂t and η,

respectively. We will apply this strategy to heterotic string field theory in the next section.

3 Heterotic string field theory

In this section we first develop the closed string field theory structures that are needed to construct

the field theory of heterotic strings [11]. As opposed to the open string theory case, we have no concise

expression for a pure-gauge closed string field. We build the pure-gauge closed string field with a
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∂

∂t
G(t) = QG(t)Φ (1.26)

S =

∫ 1

0
dt

∫ 1

0
dg⟨ηΦ, QG(t)Φ⟩ (1.27)

S =

∫ 1

0
dt⟨∂tΨ, F (t)⟩ (1.28)

S =

∫ 1

0
dt

∫ 1

0
dg⟨∂tΨ, QΨ(t)Ψ⟩ (1.29)

Ψ(0) = 0 (1.30)

Ψ(1) = Ψ (1.31)

Ψ(t) = tΨ (1.32)

Φ(0) = 0 (1.33)

Φ(1) = Φ (1.34)

Φ(t) = tΦ (1.35)

QΨ(t) = Q+ g
[[
Ψ(t),

]]
(1.36)

QΨ(t) = Q+
∞∑

n=1

κn

n!

[
Ψ(t)n,

]
(1.37)

S =

∫ 1

0
dt

∫ 1

0
dκ⟨∂tΨ, QΨ(t)Ψ⟩ (1.38)

Φ = Λ (1.39)

∂

∂t
G(t) = QG(t)Λ (1.40)

G(t) =
∫

dtQG(t)Λ (1.41)

G(t) =
∫

dtQG(t)Φ (1.42)

ηΨ = Λ (1.43)

∂

∂t
GL(t) = QGL(t)Λ (1.44)
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∂

∂t
G(t) = QG(t)Φ (1.26)

S =

∫ 1

0
dt

∫ 1

0
dg⟨ηΦ, QG(t)Φ⟩ (1.27)

S =

∫ 1

0
dt⟨∂tΨ, F (t)⟩ (1.28)

S =

∫ 1

0
dt

∫ 1

0
dg⟨∂tΨ, QΨ(t)Ψ⟩ (1.29)

Ψ(0) = 0 (1.30)

Ψ(1) = Ψ (1.31)

Ψ(t) = tΨ (1.32)

Φ(0) = 0 (1.33)

Φ(1) = Φ (1.34)

Φ(t) = tΦ (1.35)

QΨ(t) = Q+ g
[[
Ψ(t),

]]
(1.36)

QΨ(t) = Q+
∞∑

n=1

κn

n!

[
Ψ(t)n,

]
(1.37)

S =

∫ 1

0
dt

∫ 1

0
dκ⟨∂tΨ, QΨ(t)Ψ⟩ (1.38)

Φ = Λ (1.39)

∂

∂t
G(t) = QG(t)Λ (1.40)

G(t) =
∫

dtQG(t)Λ (1.41)

G(t) =
∫

dtQG(t)Φ (1.42)

ηΨ = Λ (1.43)

∂

∂t
GL(t) = QGL(t)Λ (1.44)

3

	

EOM

QηΦ = 0 (3.36)

Gauge invariance

δΦ = QΛ+ ηΩ (3.37)

δΦ = QGΛ+ ηΩ (3.38)

NS open SFT

S =
1

2
⟨e−ΦQeΦ, e−ΦηeΦ⟩+ 1

2

∫ 1

0
dt⟨e−tΦ∂te

tΦ,
[[
e−tΦQetΦ, e−tΦηetΦ

]]
⟩ (3.39)

NS string field Φ has ghost and picture number (0|0). BPZ inner product ⟨A,B⟩ vanishes except
for (2|− 1).

EOM

η
(
e−ΦQeΦ

)
= 0 (3.40)

Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.41)

G(tΦ) = e−tΦQetΦ (3.42)

QG + G ∗ G = 0 (3.43)

Λ←→ Φ (3.44)

e−ΛQeΛ (3.45)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.46)

Computation

AX := e−tΦ
(
XetΦ

)
(3.47)

X = Q, η, δ, ∂t (3.48)

S =

∫ 1

0
⟨ηA∂t , AQ⟩ (3.49)

XAY − (−)XY Y AX +
[[
AX , AY

]]
= 0 (3.50)

ηAQ = −QGAη (3.51)

δS =

∫ 1

0
dt⟨ηδA∂t , AQ⟩+ ⟨ηA∂t , δAQ⟩ (3.52)

=

∫ 1

0
dt⟨η∂tAδ, AQ⟩+ ⟨A∂t , QGAδ⟩ (3.53)

5

where QG is the shifted BRST operator around the pure-gauge AQ. In general, associated fields

are completely characterized by this property.

For two derivations X,Y satisfying [[X,Y]] := XY− (−)XYYX = 0, we obtain

QG
(
XAY − (−)XYYAX +

[[
AX, AY

]])
= 0. (7.10)

Using these properties of fields, we can rewrite the action Swzw into more fundamental form:

Swzw =
1

2
⟨Aη, AQ⟩+

1

2

∫ 1

0
dt
[
⟨At,

[[
Aη(t), AQ(t)

]]
⟩
]

Φ(t)=tΦ

=
1

2

∫ 1

0
dt
[ ∂
∂t

⟨Aη(t), AQ(t)⟩+ ⟨
[[
At, Aη(t)

]]
, AQ(t)⟩

]

Φ(t)=tΦ

=
1

2

∫ 1

0
dt
[
⟨∂tAη(t) +

[[
At(t), Aη(t)

]]
, AQ(t)⟩+ ⟨Aη(t), ∂tAQ(t)⟩

]

Φ(t)=tΦ

=
1

2

∫ 1

0
dt
[
⟨ηAt, AQ(t)⟩ − ⟨ηAQ(t), At⟩

]

Φ(t)=tΦ

=

∫ 1

0
dt
[
⟨ηAt, AQ(t)⟩

]

Φ(t)=tΦ
, (7.11)

where At denote e−Φ(t)(∂teΦ(t)). We use the fact that Q+[[AQ, ]] is a BPZ-odd operator, namely,

⟨B,QAt +
[[
AQ, At

]]
⟩ = (−)B+1⟨QB +

[[
AQ, B

]]
, At⟩ for any state B.

We, therefore, obtain the fundamental form of the action in WZW-type formulation

S =

∫ 1

0
dt⟨ηAt, AQ(t)⟩, (7.12)

which is so called the Wess-Zumino-Witten-like action. Provided that t-dependence of string

fields is linear: Φ(t) = tΦ, this WZW-like action S reduces to the standard WZW action Swzw:

S|Φ(t)=tΦ =

∫ 1

0
dt
[
⟨ηAt, AQ(t)⟩

]

Φ(t)=tΦ

=
1

2
⟨Aη, AQ⟩+

1

2

∫ 1

0
dt
[
⟨At,

[[
Aη(t), AQ(t)

]]
⟩
]

Φ(t)=tΦ

= Swzw. (7.13)

The WZW-like action S reproduces the same physics. The variation of the action is given by

δS = −⟨Aδ, ηAQ⟩, (7.14)

which is t-independent result. Then, we obtain the same equation of motion, or on-shell condition

ηAQ = 0, (7.15)

and the gauge invariance under the same gauge transformation

Aδ = QGΛ+ ηΩ

= e−Φ
[
(QΛ′)eΦ + eΦ(ηΩ)

]
, (7.16)

with parameter redefinition Λ′ = eΦΛe−Φ. Here, Aδ = e−Φ(δeΦ) is also an associated field.

Let us summarize our results. In WZW-type formulation, there are two important facts.
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Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.31)

G(tΦ) = e−tΦQetΦ (3.32)

QG + G ∗ G = 0 (3.33)

Λ←→ Φ (3.34)

e−ΛQeΛ (3.35)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.36)

NS closed SFT

S =

∫ 1

0
dt⟨ηV,G(tV )⟩ (3.37)

NS string field V has ghost and picture number (1|0). BPZ inner product vanishes except for

(4|− 1).

EOM

ηG(V ) = 0 (3.38)

3.2 NS-NS action

NS-NS string field Φ has ghost and picture number (0|0, 0). BPZ inner product vanishes

except for (3|− 1,−1).

S =

∫ 1

0
dt⟨η̄Ψ,GL(t)⟩ (3.39)

S = (3.40)

A formulae

QV = 0 (A.41)

⟨⟨ξξ̄V,V, XX̄V⟩⟩ (A.42)

5

Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.31)

G(tΦ) = e−tΦQetΦ (3.32)

QG + G ∗ G = 0 (3.33)

Λ←→ Φ (3.34)

e−ΛQeΛ (3.35)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.36)

NS closed SFT

S =

∫ 1

0
dt⟨ηV,G(tV )⟩ (3.37)

NS string field V has ghost and picture number (1|0). BPZ inner product vanishes except for

(4|− 1).

EOM

ηG(V ) = 0 (3.38)

3.2 NS-NS action

NS-NS string field Φ has ghost and picture number (0|0, 0). BPZ inner product vanishes

except for (3|− 1,−1).

S =

∫ 1

0
dt⟨η̄Ψ,GL(t)⟩ (3.39)

S = (3.40)

A formulae

QV = 0 (A.41)

⟨⟨ξξ̄V,V, XX̄V⟩⟩ (A.42)

5

Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.25)

Small and Large

ηΦ = φ (3.26)

EOM

QηΦ = 0 (3.27)

Gauge invariance

δΦ = QGΛ+ ηΩ (3.28)

NS open SFT

S =
1

2
⟨e−ΦQeΦ, e−ΦηeΦ⟩+ 1

2

∫ 1

0
dt⟨e−tΦ∂te

tΦ,
[[
e−tΦQetΦ, e−tΦηetΦ

]]
⟩ (3.29)

NS string field Φ has ghost and picture number (0|0). BPZ inner product ⟨A,B⟩ vanishes except
for (2|− 1).

EOM

η
(
e−ΦQeΦ

)
= 0 (3.30)

4

G(t) = e−Φ(t)
(
QeΦ(t)

)
(1.13)

∂

∂t
G(t) = QΦ+

[[
G(t),Φ

]]
= QG(t)Φ (1.14)

QG = Q+
[[
G,

]]
(1.15)

S =

∫ 1

0
dt⟨ηV,G(t)⟩⟩ (1.16)

∂

∂t
G(t) = QV +

∞∑

n=1

κn

n!

[
G(t)n, V

]
(1.17)

QG = Q+
∞∑

n=1

κn

n!

[
Gn,

]
λ = ηΨ (1.18)

∂

∂t
GL(t) = Qλ+

∞∑

n=1

κn

n!

[
GL(t)

n,λ
]

(1.19)

QGL = Q+
∞∑

n=1

κn

n!

[
Gn
L,

]L
(1.20)

∂

∂t
GB(t) = QGB(t)(ηXΨ) (1.21)

S =

∫ 1

0
dt

∫ 1

0
dκ⟨ηη̄Ψ, QGB(t)Ψ⟩ (1.22)

∂

∂t
GL(t) = QGL(t)(ηΨ) (1.23)

S =

∫ 1

0
dt⟨η̄Ψ,GL(t)⟩ (1.24)

S =

∫ 1

0
dt

∫ 1

0
dκ⟨ηη̄Ψ, QGL(t)Ψ⟩ (1.25)

2

	

	

	

	

	

	 	

Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.44)

G(tΦ) = e−tΦQetΦ (3.45)

QG + G ∗ G = 0 (3.46)

Λ←→ Φ (3.47)

e−ΛQeΛ (3.48)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.49)

Computation

AX := e−tΦ
(
XetΦ

)
(3.50)

X = Q, η, δ, ∂t (3.51)

S =

∫ 1

0
⟨ηA∂t , AQ⟩ (3.52)

XAY − (−)XY Y AX +
[[
AX , AY

]]
= 0 (3.53)

ηAQ = −QGAη (3.54)

δS =

∫ 1

0
dt⟨ηδA∂t , AQ⟩+ ⟨ηA∂t , δAQ⟩ (3.55)

=

∫ 1

0
dt⟨η∂tAδ, AQ⟩+ ⟨A∂t , QGAδ⟩ (3.56)

δS =

∫ 1

0
dtδ⟨ηA∂t , AQ⟩ (3.57)

=

∫ 1

0
dt
(
⟨η(δA∂t), AQ⟩+ ⟨ηAt, δAQ⟩

)
(3.58)

... (3.59)

=

∫ 1

0
dt
(
⟨η(∂tAδ), AQ⟩+ ⟨ηAδ, ∂tAQ⟩

)
(3.60)

=

∫ 1

0
dt

∂

∂t
⟨ηAδ, AQ⟩ = ⟨Aδ, ηAQ⟩ (3.61)

ηAQ = −QGAη (3.62)

6

NS closed SFT

S =

∫ 1

0
dt⟨ηV,G(tV )⟩ (3.63)

NS string field V has ghost and picture number (1|0). BPZ inner product vanishes except for

(4|− 1).

EOM

ηG(V ) = 0 (3.64)

3.2 NS-NS action

NS-NS string field Φ has ghost and picture number (0|0, 0). BPZ inner product vanishes

except for (3|− 1,−1).

S =

∫ 1

0
dt⟨η̄Ψ,GL(t)⟩ (3.65)

S = (3.66)

A formulae

QV = 0 (A.67)

⟨⟨ξξ̄V,V, XX̄V⟩⟩ (A.68)

S =
1

2
⟨Ψ, QΨ⟩+ g

3
⟨Ψ, X(Ψ ∗Ψ)⟩ (A.69)

S =
1

2
⟨Ψ, QΨ⟩+

∞∑

n=1

gn

n+ 2
⟨Ψ,

[
Ψn,Ψ]L⟩ (A.70)

(
+ ηΩ′) (A.71)

δ
(
⟨η̄Ψ, [XQηΨ, ηΨ]⟩

)
= ⟨δΨ, η̄

(
2[XQηΨ, ηΨ] +X[QηΨ, ηΨ]

)
⟩ (A.72)

−⟨δΨ,
(
2X[ηΨ, η̄QηΨ] + [ηΨ, X η̄QηΨ]

)
⟩ (A.73)
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4
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(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

	

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)
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4
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3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

	

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

	

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)
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Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)

4

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

Superstring field Ψ has (1|− 1) BPZ inner product vanishes unless (3|− 2)

Witten’s Cubic action

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ, X(i)

(
Ψ ∗Ψ

)
⟩ (2.25)

Resolving

X =

∫
dz

2πi
f(z)X(z) (2.26)

M2(Ψ1,Ψ2) =
1

3

(
X(Ψ1 ∗Ψ2) + (XΨ1) ∗Ψ2 +Ψ1 ∗ (XΨ2)

)
(2.27)

M2(M2(A,B), C) ̸= M2(A,M2(B,C)) (2.28)

(Q+M2 +M3)
2 = 0 (2.29)

M2
2 + [[Q,M3]] = 0 (2.30)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.31)

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,M2(Ψ

2)⟩+ 1

4
⟨Ψ,M3(Ψ

3)⟩+ 1

5
⟨Ψ,M4(Ψ

4)⟩+ . . . (2.32)

(Q+M2 +M3 +M4 + . . . )2 = 0 (2.33)

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.34)

Small and Large

ηΦ = φ (3.35)
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Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)
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at each order of smtn and these formulae determine L(n)
m+n+2 and Ξ(n+1)

m+n+2 recursively.

Note that Ξ(s, t) is not unique, however, there exists the one including symmetric insertions

Ξ(n+1)
m+n+2 =

m+ 1

m+ n+ 3

(
ξL(n)

m+n+2 − L(n)
m+n+2

(
ξ · Im+n+1

))
. (5.28)

Therefore, we can always derive explicit forms of these inserted products as follows:

L(0)
n+1 = given,

Ξ(1)
n+1 =

n

n+ 2

(
ξL(0)

n+1 − L(0)
n+1

(
ξ · In

))
,

L(1)
n+1 = [[Q,Ξ(1)

n+1]] + [[L(0)
2 ,Ξ(1)

n ]] + · · ·+ [[L(0)
n ,Ξ(1)

2 ]],

Ξ(2)
n+1 =

n− 1

n+ 2

(
ξL(1)

n+1 − L(1)
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For example, we find that the lowest inserted product L(1)
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at each order of smtn and these formulae determine L(n)
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m+n+2 recursively.
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6.1 NS-NS string products

Now the situation is somewhat different from the NS string, since we need to add twice as

much picture and we need to pay attention to how it is distributed between left-moving and

right-moving sectors. We, therefore, can give two constructions: asymmetric and symmetric.

Asymmetric Construction

The easiest way for NS-NS products is to apply the NS construction twice: the first time

to get the correct picture number for left-movers and a second time to get the correct picture

number for the right-movers. More specifically we proceed as follows. Starting with the bosonic

product {L(0,0)
k+1 }∞k=0, we climb a ladder of products {L(k,0)

n+1 }nk=0 and gauge products {Ξ(k,0)
n+1 }nk=1:

L(0,0)
n+1

ξ→ Ξ(1,0)
n+1

Q→ L(1,0)
n+1

ξ→ . . .
ξ→ Ξ(n,0)

n+1
Q→ L(n,0)

n+1 . (6.5)

At the top of the ladder, the product L(n,0)
n+1 has the required left-moving picture, but the right-

moving picture is still absent. So we take L(n,0)
n+1 as the input for a second set of recursions which

add rightmoving picture. Starting with L(n,0)
n+1 we climb a second ladder

L(n,0)
n+1

ξ̄→ Ξ(n,1)
n+1

L→ L(n,1)
n+1

ξ̄→ . . .
ξ̄→ Ξ(n,n)

n+1
L→ L(n,n)

n+1 . (6.6)

This construction requires the fewest auxiliary products of intermediate picture number

in defining the recursion. However, asymmetric insertions of left- and right-moving picture-

changing operators appear. This asymmetry first appears in L(2,2)
3 .

Symmetric Construction

To restore symmetry between left- and right-movers we consider a different solution of the

L∞-relations. Let us introduce the 2-product L(1,1)
2 written in the form

L(1,1)
2 =

1

2

[[
Q,Ξ(1,1)

2 + Ξ̄(1,1)
2

]]
, (6.7)

where Ξ(1,1)
2 is a left gauge product defined by replacing X in the expression for L(1,1)

2 with ξ and

Ξ̄(1,1)
2 is a right gauge product defined by replacing X̄ in L(1,1)

2 with ξ̄. Once we act with Q, two

gauge products Ξ(1,1)
2 and Ξ̄(1,1)

2 produce the same expression: left/right symmetry is manifest.

Denoting the left- and right-moving η zero modes by η and η̄ respectively, we have the relation

[[
η,Ξ(1,1)

2

]]
= L(0,1)

2 ,
[[
η, Ξ̄(1,1)

2

]]
= L(1,0)

2 , (6.8)
[[
η, Ξ̄(1,1)

2

]]
= 0,

[[
η̄,Ξ(1,1)

2

]]
= 0. (6.9)

Note that the left gauge product Ξ(1,1)
2 is in the right-moving small Hilbert space, while the right

gauge product Ξ̄(1,1)
2 is in the left-moving small Hilbert space. The products L(1,0)

2 and L(0,1)
2

now carry a single X or X̄ insertion, respectively. Pulling Q out we can write

L(1,0)
2 =

[[
Q,Ξ(1,0)

2

]]
, L(0,1)

2 =
[[
Q, Ξ̄(0,1)

2

]]
, (6.10)
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Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.31)

G(tΦ) = e−tΦQetΦ (3.32)

QG + G ∗ G = 0 (3.33)

Λ←→ Φ (3.34)

e−ΛQeΛ (3.35)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.36)

NS closed SFT

S =

∫ 1

0
dt⟨ηV,G(tV )⟩ (3.37)

NS string field V has ghost and picture number (1|0). BPZ inner product vanishes except for

(4|− 1).

EOM

ηG(V ) = 0 (3.38)

3.2 NS-NS action

NS-NS string field Φ has ghost and picture number (0|0, 0). BPZ inner product vanishes

except for (3|− 1,−1).

S =

∫ 1

0
dt⟨η̄Ψ,GL(t)⟩ (3.39)

S = (3.40)

A formulae

QV = 0 (A.41)

⟨⟨ξξ̄V,V, XX̄V⟩⟩ (A.42)

5

A pure-gauge solution of small-space theory is the key concept of WZW-like formulation of

NS superstring field theory in the large Hilbert space, which determines the vertices of theory,

and we expect that it goes in the case of the NS-NS sector. There is an attempt to construct

non-vanishing interaction terms of NS-NS string fields utilizing a pure-gauge solution GB of

bosonic closed string field theory [19]. However, the construction is not complete: the nonlinear

gauge invariance is not clear and the defining equation of GB is ambiguous. To obtain nonlinear

gauge invariances, we have to add appropriate terms to these interaction terms defined by GB at

each order. Then, the ambiguities of vertices are removed and we obtain the defining equation

of a suitable pure-gauge solution GL, which we explain in the following sections.

In this paper, we complete this construction begun in [19] by determining these additional

terms which are necessitated for the nonlinear gauge invariance and by giving closed-form ex-

pressions for the action and nonlinear gauge transformations in the NS-NS sector of closed

superstring field theory. We propose the action

S =

∫ 1

0
dt⟨η̄Ψt,GL(t)⟩, (1.1)

where Ψt is an NS-NS string field Ψ plus η-exact terms and GL is a pure-gauge solution to the

heterotic string equation of motion in the small Hilbert space. The action has the WZW-like

form and the almost same algebraic properties as the large-space action for NS closed string

field theory [18].

This paper is organized as follows. In section 2 we show that cubic and quartic actions can be

determined by adding appropriate terms and imposing gauge invariance. In section 3, first, we

briefly review the method of gauge-invariant insertions of picture-changing operators [26,27] and

provide some useful properties of the products of heterotic string field theory in the small Hilbert

space. Then, we give the defining equation of GL and associated fields which are necessitated to

construct the NS-NS action. In section 4 we derive the WZW-like expression for the action and

nonlinear gauge transformations and show that η̄GL = 0 gives the NS-NS superstring equation

of motion just as other large-space theories. We end with some conclusions.

2 Nonlinear gauge invariance

Let κ be the coupling constant of closed string fields. We expand an action S for NS-NS string

field theory in powers of κ: S = 2
α′

∑
n κ

nSn+2. In the large Hilbert space, which includes the ξ-

and ξ̄-zero modes coming from bosonization of the βγ- and β̄γ̄-systems, the NS-NS string field

Ψ is a Grassmann even, (total) ghost number 0, left-mover picture number 0, and right-mover

picture number 0 state. The free action S2 is given by

S2 =
1

2
⟨η̄Ψ, QηΨ⟩, (2.2)

where Q is the BRST operator, η is the zero mode of the left-moving current η(z), and η̄ is

the zero mode of the right-moving current η̄(z̄) [17]. The bilinear is the c−0 -inserted BPZ inner

product: ⟨A,B⟩ ≡ ⟨bpz(A)|c−0 |B⟩, where c−0 = 1
2(c0 − c̄0). For brevity, we use the symbol

(G|p, p̄) which denotes that the total ghost number is G, the left-mover picture number is p,
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Φ ∈ HL (1.45)

Λ ∈ Ker
[
η
]

(1.46)

ηΨ = Λ(1|−1,0) (1.47)

2 Pure-gauge

Defining equation

∂τG(τV ) = QG(τV )V = QV +
∞∑

n=1

κn

n!
[G(τV )n, V ] (2.48)

Let G =
∑∞

n=0 κ
nGn be the expansion of G in powers of κ. ∂τG0 = QV leads

G0 = τQV. (2.49)

∂τG1 = κ[G0, V ] leads

G1 =
τ2

2
[QV, V ]. (2.50)

Note that QG1 = − 1
2! [G0,G0] and 1

2!

(
[G0,G1] + [G1,G0]

)
= [G0,G1] hold. Similarly, ∂τG2 =

1
2 [G

2
0 , V ] + [G1, V ] leads

G2 =
τ3

3!

(
[QV,QV, V ] + [[QV, V ], V ]

)
. (2.51)

Note that QG2 = − 1
3! [G0,G0,G0]− 1

3! [[G0,G0], V ]− 2
3 [G1,G0]+

1
3! [[G0,G0], V ]− 1

3 [G1,G0],
1
2!

(
[G0,G2]+

[G2,G0]
)
= [G0,G2], and

1
3!

(
[G0,G0,G1] + [G0,G1,G0] + [G1,G0,G0]

)
= 1

2 [G0,G0,G1] hold. ∂τG3 =
1
3! [G

3
0 , V ] + 2

2! [G0,G1, V ] + [G2, V ] leads

G3 =
τ4

4!
[QV,QV,QV, V ] +

3τ4

4!
[[QV, V ], QV, V ] +

τ4

4!

(
[[QV,QV, V ], V ] + [[[QV, V ], V ], V ]

)
.

(2.52)

Note that QG3 = − 1
4! [G0,G0,G0,G0]− 1

4! [[G0,G0,G0], V ]− 3
4! [[G0,G0, V ],G0]− 2

4!

(
[[G0,G0],G0, V ] +

2[G1,G0, V ]
)
+ 3

4! [[G0,G0],G0, V ] − 3!
4! [G1,G0,G0] − 3!

4!

(
[[G1,G0], V ] + [[G0, V ],G1] + [[V,G1],G0]

)
−

3!
4!

(
[G2,G0] + [QG2, V ]

)
.

3 BPZ

⟨ω|Ln(A1 ⊗ · · ·⊗An)⊗A0 = (−)A1+···+An⟨ω|A1 ⊗ Ln(A2 ⊗ · · ·⊗An ⊗A0) (3.53)
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1 Part 1 (15 minutes)

1.1 What is string field theory?

String field

Ψ =

∫
d26p

(2π)26

(
T (p)c1|0; p⟩+Aµ(p)a

µ
−1c1|0; p⟩+ iB(p)c0|0; p⟩+ . . .

)
(1.1)

BPZ inner product vanishes except for 3

String Field Ψ and BRST operator Q has ghost number 1

V(z) = c(z)ek·X

V(z) = c(z)δ(γ)Vm

(1|− 1)

V(z) = ξ(z)ce−φVm

(0|0)

m2 = − 1

α′ , 0 ,
1

α′ ,
2

α′ , . . . (1.2)

V(z, z̄) = ξξ̄cc̄e−φe−φ̄Vm (1.3)
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S =

∫ 1

0
dt⟨ηΦ,G(t)⟩ (A.57)

G(t) = e−Φ(t)
(
QeΦ(t)

)
(A.58)

∂

∂t
G(t) = QΦ+

[[
G(t),Φ

]]
= QG(t)Φ (A.59)

QG = Q+
[[
G,

]]
(A.60)

S =

∫ 1

0
dt⟨ηV,G(t)⟩⟩ (A.61)

∂

∂t
G(t) = QV +

∞∑

n=1

κn

n!

[
G(t)n, V

]
(A.62)

QG = Q+
∞∑

n=1

κn

n!

[
Gn,

]
λ = ηΨ (A.63)

∂

∂t
GL(t) = Qλ+

∞∑

n=1

κn

n!

[
GL(t)

n,λ
]

(A.64)

QGL = Q+
∞∑

n=1

κn

n!

[
Gn
L,

]L
(A.65)

∂

∂t
GB(t) = QGB(t)(ηXΨ) (A.66)

S =

∫ 1

0
dt

∫ 1

0
dκ⟨ηη̄Ψ, QGB(t)Ψ⟩ (A.67)

∂

∂t
GL(t) = QGL(t)(ηΨ) (A.68)
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QηXΨ+
κ

2
[QηXΨ, ηXΨ] +O(κ2) (A.136)

S =
1

2
⟨η̄Ψ, QηΨ⟩+ κ

3!
⟨η̄Ψ,

[
XQηΨ, ηΨ

]
⟩+O(κ2) (A.137)

κ

3 · 3!⟨η̄Ψ, X
[
QηΨ, ηΨ

]
− 2

[
XQηΨ, ηΨ

]
+

[
QηΨ, XηΨ

]
⟩ (A.138)
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Let us determine second order gauge transformation δ2Ψ satisfying δ2S2 + δ1(κS3) = 0. For

this purpose, it is rather suitable to use a pair of fundamental operators (Q, η, ξ) than to use a

pair of composite operators such as (Q, η, Q̃). For example, V1(Ψ) = η̄QηΨ appears in W2(Ψ2) if

and only if we use (Q, η, ξ) and furthermore, while ⟨Q̃[QΨ,Λ], η̄QηΨ⟩ = 0, ⟨X[QηΨ,Λ], η̄QηΨ⟩ ̸=
0. The first order Q-gauge transformation of S3 is given by

δ1,ΛS3 =
1

2
⟨QΛ,

1

3

(
X[QηΨ, ηη̄Ψ] + [XQηΨ, ηη̄Ψ] + [QηΨ, Xηη̄Ψ]

)
⟩. (2.13)

Note that the zero mode X of the picture-changing operator is inserted cyclicly. We find that

under the following second order gauge transformation

δ2,ΛΨ =
κ

3

{
X[ηQΨ,Λ] + [XηQΨ,Λ] + [ηQΨ, XΛ]

}

+
κ

6

{
X[ηΨ, QΛ] + [XηΨ, QΛ] + [ηΨ, XQΛ]

}
, (2.14)

the cubic term S3 of the action is gauge invariant: δ2,ΛS2 + δ1,Λ(κS3) = 0. For brevity, we

define the following new string product which includes the zero mode X of the picture-changing

operator

[A,B]L :=
1

3

(
X[A,B] + [XA,B] + [A,XB]

)
. (2.15)

This new product [A,B]L satisfies the same properties as original product [A,B], namely sym-

metric property [A,B]L = (−)AB[B,A]L and derivation properties of Q and η. Note that when

we use this new product, the cubic term S3 of the action is given by

S3 =
1

3!
⟨η̄Ψ, [QηΨ, ηΨ]L⟩, (2.16)

and the variation δS3 becomes

δS3 =
1

2
⟨δΨ, η̄[QηΨ, ηΨ]L + [η̄QηΨ, ηΨ]L⟩. (2.17)

Then, we can quickly show that S2 + κS3 is gauge invariant up to O(κ2)

δ2,ΛS2 + δ1,Λ(κS3) = ⟨δ2Ψ, η̄QηΨ⟩+ κ

2
⟨QΛ, [QηΨ, ηη̄Ψ]L⟩ = 0, (2.18)

under the following Q-gauge transformations

δ1,ΛΨ = QΛ, δ2,ΛΨ = κ[ηQΨ,Λ]L +
κ

2
[ηΨ, QΛ]L. (2.19)

Similarly, we find that S2 + κS3 is gauge invariant under η-gauge transformations

δ1,ΩΨ = ηΛ, δ2,ΩΨ =
κ

2
[ηΨ, η̄Ω]L, (2.20)

as follows

δ2,ΩS2 + δ1,Ω(κS3) = ⟨δ2Ψ, η̄QηΨ⟩+ κ

2
⟨η̄Ω, [QηΨ, ηη̄Ψ]L⟩ = 0. (2.21)
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It is very important to obtain clear understandings of the geometrical meaning of theory,

gauge fixing [31,32], the relation between two formulations: large- and small-space formulations.

However, our large-space formulation is purely algebraic and these aspects remain mysterious.
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A Heterotic theory in the small Hilbert space

The action for heterotic string field theory in the small Hilbert space is

S =
1

2
⟨Φ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨Φ, [Φn,Φ]L⟩, (A.103)

where the heterotic string field Φ is a ghost-and-picture number (2| − 1, 0) state in the small

Hilbert space and picture-changing operators inserted product [A1, . . . , An]L given by [27] carries

ghost-and-picture number (3 − 2n|n − 1, 0). This action is invariant under the following gauge

transformation [5, 6]

δΦ = Qλ+
∞∑

n=1

κn

n!
[Φn,λ]L ≡ QΦλ, (A.104)

where λ is a gauge parameter carrying ghost-and-picture number (1|− 1, 0).

Just as bosonic theory [4, 6], the equation of motion is given by

QΦ+
∞∑

n=1

κn

(n+ 1)!
[Φn,Φ]L = 0. (A.105)

A pure-gauge G is constructed by infinitisimal gauge transformations [5,18]. Therefore, G is

defined by the following differential equation

∂

∂τ
G = Qλ+

∞∑

n=1

κn

n!
[Gn,λ]L = QGλ. (A.106)

B Some identities

BPZ-properties

The c−0 -inserted BPZ inner product ⟨A,B⟩ := ⟨bpz(A)|c−0 |B⟩, bosonic or heterotic string

products, and a derivation operator X satisfy

⟨A,B⟩ = (−)(A+1)(B+1)⟨B,A⟩, (B.107)

⟨[A0, . . . , An−1], An⟩ = (−)A0+···+An−1⟨A0, [A1, . . . , An]⟩, (B.108)

⟨XA,B⟩ = (−)X⟨A,XB⟩, (B.109)
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ηΨ = Λ (1.44)

∂

∂t
GL(t) = QGL(t)Λ (1.45)

Φ ∈ HL (1.46)

Λ ∈ Ker
[
η
]

(1.47)

ηΨ = Λ(1|−1,0) (1.48)

δΦ = QΛ+
∞∑

n=1

κn

n!

[
Φn,Λ

]L
(1.49)

= QΦΛ (1.50)

QΦ+
∞∑

n=1

κn

(n+ 1)!

[
Φn,Φ

]L
= 0 (1.51)

∂

∂t
G(t) = QΛ+

∞∑

n=1

κn

n!

[
G(t)n,Λ

]L
(1.52)

= QG(t)Λ (1.53)

[
A,B

]L
, (1.54)

[
A,B,C

]L
, (1.55)

[
A,B,C,D

]L
, (1.56)

2 Pure-gauge

Defining equation

∂τG(τV ) = QG(τV )V = QV +
∞∑

n=1

κn

n!
[G(τV )n, V ] (2.57)

Let G =
∑∞

n=0 κ
nGn be the expansion of G in powers of κ. ∂τG0 = QV leads

G0 = τQV. (2.58)

∂τG1 = κ[G0, V ] leads

G1 =
τ2

2
[QV, V ]. (2.59)
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Φ ∈ HL (1.45)

Λ ∈ Ker
[
η
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ηΨ = Λ(1|−1,0) (1.47)
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Let G =
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n=0 κ
nGn be the expansion of G in powers of κ. ∂τG0 = QV leads

G0 = τQV. (2.49)

∂τG1 = κ[G0, V ] leads

G1 =
τ2

2
[QV, V ]. (2.50)

Note that QG1 = − 1
2! [G0,G0] and 1

2!

(
[G0,G1] + [G1,G0]

)
= [G0,G1] hold. Similarly, ∂τG2 =

1
2 [G

2
0 , V ] + [G1, V ] leads

G2 =
τ3

3!

(
[QV,QV, V ] + [[QV, V ], V ]

)
. (2.51)

Note that QG2 = − 1
3! [G0,G0,G0]− 1

3! [[G0,G0], V ]− 2
3 [G1,G0]+

1
3! [[G0,G0], V ]− 1

3 [G1,G0],
1
2!

(
[G0,G2]+

[G2,G0]
)
= [G0,G2], and

1
3!

(
[G0,G0,G1] + [G0,G1,G0] + [G1,G0,G0]

)
= 1

2 [G0,G0,G1] hold. ∂τG3 =
1
3! [G

3
0 , V ] + 2

2! [G0,G1, V ] + [G2, V ] leads

G3 =
τ4

4!
[QV,QV,QV, V ] +

3τ4

4!
[[QV, V ], QV, V ] +

τ4

4!

(
[[QV,QV, V ], V ] + [[[QV, V ], V ], V ]

)
.

(2.52)

Note that QG3 = − 1
4! [G0,G0,G0,G0]− 1

4! [[G0,G0,G0], V ]− 3
4! [[G0,G0, V ],G0]− 2

4!

(
[[G0,G0],G0, V ] +

2[G1,G0, V ]
)
+ 3
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4! [G1,G0,G0] − 3!

4!

(
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−

3!
4!
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[G2,G0] + [QG2, V ]

)
.

3 BPZ

⟨ω|Ln(A1 ⊗ · · ·⊗An)⊗A0 = (−)A1+···+An⟨ω|A1 ⊗ Ln(A2 ⊗ · · ·⊗An ⊗A0) (3.53)
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Hence, the associated field Ψδ

Ψδ = δΨ+
κ

2
[ηΨ, δΨ]L +

κ2

3!

(
[ηΨ, ηQΨ, δΨ]L + 2

[
ηΨ, [ηΨ, δΨ]L

]L)
+ . . . , (4.93)

defined by ∂τΨδ = δΨ+ κ[ηΨ,Ψδ]LGL
in (3.82) determines Wn-terms.

The WZW-like action

Let Ψ(t) be a t-parametrized NS-NS string field satisfying Ψ(0) = 0 and Ψ(1) = Ψ. We can

extend the equation (4.89) to this Ψ(t). Note that η̄GL is a QGL-, η̄-, and η-exact state and

∂t(QGLΨδ) = δ(QGLΨt) holds. The t-parametrized associated field Ψt is equivalent to Ψ plus

η-exact terms, provided that the t-parametrization is linear:Ψ(t) = tΨ.

Thus, we propose the following WZW-like action

S =
2

α′

∫ 1

0
dt⟨η̄Ψt,GL(t)⟩, (4.94)

which reduces to (4.89) or the familiar WZW form (see Appendix B)

S|Ψ(t)=tΨ =
1

α′

(
⟨Ψη̄,GL⟩+ κ

∫ 1

0
dt⟨Ψt, [Ψη̄(t),GL(t)]

L
GL

⟩
)
, (4.95)

if we set Ψ(t) = tΨ. Note that the (n+1)-point vertex includes n insertions of η and the action

S is invariant under the linear2 gauge transformation δηΨ = η Ω̃.

The equation of motion is given by

η̄ GL =

∫ 1

0
dτ

(
ηη̄QGLΨ

)
= 0, (4.96)

which is derived in subsection 4.2. Although the action includes the integral over a real parameter

t, the action S, the variation δS, the equation of motion η̄GL = 0, and gauge transformations

are independent of the t-parametrization or t-parametrized path Ψ(t).

4.2 Nonlinear gauge invariance

In this subsection, we derive the equation of motion and the closed form expression of nonlinear

gauge transformations.

For this purpose, we prove that the variation δS does not includes t and is given by

δS = ⟨Ψδ, η̄ GL⟩. (4.97)

Using the relation ηQGL(∂tΨδ−δΨt+κ[Ψt,ψδ]LGL
) = 0, which is equivalent to ∂t(δGL) = δ(∂tGL)

with ηΨX = ψX, we find that the following equation holds regardless of t-parametrization

⟨δΨt, η̄GL⟩ = −⟨δΨt, QGLψη̄⟩ = −⟨∂tΨδ + κ[Ψδ,ψt]
L, QGLΨη̄⟩

= ⟨∂tΨδ, η̄GL⟩+ κ⟨ηGL, [Ψδ,ψt]
L
GL

⟩. (4.98)

2Note that, however, GL and Ψt include a lot of ηΨ and as seen in 4.2, it does not mean that there are no

gauge transformations including nonlinear terms of ηΨ.
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with the initial condition ψX(0) = 0. Note that ψX, as well as GL, is a function of ηΨ and τ is

a real parameter connecting 0 and ψX(ηΨ) . The associated filed ψX carries ghost-and-picture

number (GX + 1|pX − 1, p̄X), where (GX|pX, p̄X) is that of X.

A ‘large’ associated field ΨX

These pure-gauge field GL and associated field ψX belong to the small Hilbert space of left

movers: η GL = 0, η ψX = 0. Since η-cohomology is trivial in the large Hilbert space, there exist

large-space fields GL and ΨX such that

GL = ηGL, ψX = ηΨX. (3.79)

Note that the relation ηXGL = −ηQGLΨX holds because of (−)XX(ηGL) = QGL(ηΨX) and

ηGL = 0. Hence, up to QGL- and η-exact terms, these large-space fields GL and ΨX satisfy

XGL = −QGLΨX, (3.80)

and the defining equations (up to QGL- and η-exact terms) of G and ΨX are given by

∂

∂τ
GL = −QGLΨ, (3.81)

∂

∂τ
ΨX = (−1)XXΨ+ κ[ηΨ,ΨX]

L, (3.82)

with the initial conditions GL(τ = 0) = 0 and ΨX(τ = 0) = 0. As well as GL and ψX, large fields

GL and ΨX are also functions of (Ψ, ηΨ). Here τ is a real parameter connecting 0 and ηΨ. With

the initial condition ΨX(τ = 0) = 0, we find that the first few terms in ΨX are given by

(−1)XΨX = XΨ+
κ

2
[ηΨ,XΨ]L +

κ2

3!

(
[ηΨ, ηQΨ,XΨ]L + 2[ηΨ, [ηΨ,XΨ]L]L

)
+ . . . . (3.83)

A t-parametrized large field Ψt

Let Ψ(t) be a t-parametrized path in field space connecting Ψ(0) = 0 and Ψ(1) = Ψ. The

above defining equations of GL, ψX, GL, and ΨX hold not only for the field Ψ but for the t-

parametrized field Ψ(t). Hence, we can built t-parametrized ones GL(t), ψX(t), GL(t), and ΨX(t)

in the same manner. For example, for X = ∂t, we obtain the t-parametrized field Ψt

Ψt(t) = ∂tΨ(t)+
κ

2
[ηΨ(t), ∂tΨ(t)]L +

κ2

3!

(
[ηΨ(t), QηΨ(t), ∂tΨ(t)]L

+ 2[ηΨ(t), [ηΨ(t), ∂tΨ(t)]L]L
)
+ . . . , (3.84)

which appears in the action for NS-NS string fields with general t-parametrization. Note that

the equation ηΨt(t) = ηΨ holds for the linear path Ψ(t) = tΨ.

4 WZW-like expression

Let GL =
∑∞

n=0 κ
nG(n)

L be the expansion of the pure-gauge GL in powers of κ. In this section,

we propose the large-space action utilizing the pure-gauge GL(t) and the associated field Ψt.
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Hilbert space

F(G) ≡ QG +
∞∑

n=1

κn

(n+ 1)!

[
Gn,G

]L
= 0, (3.72)

these shifted products satisfy (strong) L∞-relations1:

∑

σ

∑

k

(−1)|σ|
[
[Aσ(1), . . . , Aσ(k)]

L
G , Aσ(k+1), . . . , Aσ(n)

]L
G = 0. (3.73)

Then, QG becomes a nilpotent operator.

A pure-gauge solution GL of heterotic theory

We can build the pure-gauge solution GL of heterotic string field theory in the ‘small’ Hilbert

space with a finite gauge parameter ηΨ living in the small Hilbert space by successive infinites-

imal gauge transformations. Therefore, the pure-gauge field GL = G(ηΨ) is a function of ηΨ,

defined by the differential equation

∂

∂τ
GL(τηΨ) = QGL(ηΨ), (3.74)

with the initial condition GL(0) = 0, where τ ∈ [0, 1] is a real parameter connecting 0 and

GL(ηΨ). (See also [5, 18], Appendix A, and Appendix B.)

Note that GL is a Grassmann even and ghost-and-picture number (2|− 1, 0) state satisfying

ηGL = 0, ηΨ is a Grassmann odd and ghost-and-picture number (1| − 1, 0) state satisfying

η(ηΨ) = 0, and the heterotic string n-product [A1, . . . , An]L is a Grassmann odd and ghost-and-

picture number (3− 2n|n− 1, 0) product satisfying ∆η[A1, . . . , An]L = 0. For us, Ψ is an NS-NS

string field in the large Hilbert space of left-and-right movers, namely, η̄GL ̸= 0 and η̄Ψ ̸= 0.

Solving the defining equation (3.74) and setting τ = 1, we obtain the explicit form of GL

GL = QηΨ+
κ

2
[QηΨ, ηΨ]L +

κ2

3!

(
[QηΨ, QηΨ, ηΨ]L + [[QηΨ, ηΨ]LηΨ]L

)
+ . . . . (3.75)

An associated field ψX with derivation X

There exist special string fields ψX = ψX(ηΨ) such that

(−1)XXGL = QGLψX, (3.76)

where X is a derivation of heterotic string products:

(−1)XX[A1, . . . , An]
L +

n∑

i=1

(−1)X(A1+···+Ai−1)[A1, . . . ,XAi, . . . An]
L = 0. (3.77)

The defining equation of the field ψX is given by
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Hence, the associated field Ψδ

Ψδ = δΨ+
κ

2
[ηΨ, δΨ]L +

κ2

3!

(
[ηΨ, ηQΨ, δΨ]L + 2

[
ηΨ, [ηΨ, δΨ]L

]L)
+ . . . , (4.93)

defined by ∂τΨδ = δΨ+ κ[ηΨ,Ψδ]LGL
in (3.82) determines Wn-terms.

The WZW-like action

Let Ψ(t) be a t-parametrized NS-NS string field satisfying Ψ(0) = 0 and Ψ(1) = Ψ. We can

extend the equation (4.89) to this Ψ(t). Note that η̄GL is a QGL-, η̄-, and η-exact state and

∂t(QGLΨδ) = δ(QGLΨt) holds. The t-parametrized associated field Ψt is equivalent to Ψ plus

η-exact terms, provided that the t-parametrization is linear:Ψ(t) = tΨ.

Thus, we propose the following WZW-like action

S =
2

α′

∫ 1

0
dt⟨η̄Ψt,GL(t)⟩, (4.94)

which reduces to (4.89) or the familiar WZW form (see Appendix B)

S|Ψ(t)=tΨ =
1

α′

(
⟨Ψη̄,GL⟩+ κ

∫ 1

0
dt⟨Ψt, [Ψη̄(t),GL(t)]

L
GL

⟩
)
, (4.95)

if we set Ψ(t) = tΨ. Note that the (n+1)-point vertex includes n insertions of η and the action

S is invariant under the linear2 gauge transformation δηΨ = η Ω̃.

The equation of motion is given by

η̄ GL =

∫ 1

0
dτ

(
ηη̄QGLΨ

)
= 0, (4.96)

which is derived in subsection 4.2. Although the action includes the integral over a real parameter

t, the action S, the variation δS, the equation of motion η̄GL = 0, and gauge transformations

are independent of the t-parametrization or t-parametrized path Ψ(t).

4.2 Nonlinear gauge invariance

In this subsection, we derive the equation of motion and the closed form expression of nonlinear

gauge transformations.

For this purpose, we prove that the variation δS does not includes t and is given by

δS = ⟨Ψδ, η̄ GL⟩. (4.97)

Using the relation ηQGL(∂tΨδ−δΨt+κ[Ψt,ψδ]LGL
) = 0, which is equivalent to ∂t(δGL) = δ(∂tGL)

with ηΨX = ψX, we find that the following equation holds regardless of t-parametrization

⟨δΨt, η̄GL⟩ = −⟨δΨt, QGLψη̄⟩ = −⟨∂tΨδ + κ[Ψδ,ψt]
L, QGLΨη̄⟩

= ⟨∂tΨδ, η̄GL⟩+ κ⟨ηGL, [Ψδ,ψt]
L
GL

⟩. (4.98)

2Note that, however, GL and Ψt include a lot of ηΨ and as seen in 4.2, it does not mean that there are no

gauge transformations including nonlinear terms of ηΨ.
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δ
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(
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δ
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6.1 NS-NS string products

Now the situation is somewhat different from the NS string, since we need to add twice as

much picture and we need to pay attention to how it is distributed between left-moving and

right-moving sectors. We, therefore, can give two constructions: asymmetric and symmetric.

Asymmetric Construction

The easiest way for NS-NS products is to apply the NS construction twice: the first time

to get the correct picture number for left-movers and a second time to get the correct picture

number for the right-movers. More specifically we proceed as follows. Starting with the bosonic

product {L(0,0)
k+1 }∞k=0, we climb a ladder of products {L(k,0)

n+1 }nk=0 and gauge products {Ξ(k,0)
n+1 }nk=1:

L(0,0)
n+1

ξ→ Ξ(1,0)
n+1

Q→ L(1,0)
n+1

ξ→ . . .
ξ→ Ξ(n,0)

n+1
Q→ L(n,0)

n+1 . (6.5)

At the top of the ladder, the product L(n,0)
n+1 has the required left-moving picture, but the right-

moving picture is still absent. So we take L(n,0)
n+1 as the input for a second set of recursions which

add rightmoving picture. Starting with L(n,0)
n+1 we climb a second ladder

L(n,0)
n+1

ξ̄→ Ξ(n,1)
n+1

L→ L(n,1)
n+1

ξ̄→ . . .
ξ̄→ Ξ(n,n)

n+1
L→ L(n,n)

n+1 . (6.6)

This construction requires the fewest auxiliary products of intermediate picture number

in defining the recursion. However, asymmetric insertions of left- and right-moving picture-

changing operators appear. This asymmetry first appears in L(2,2)
3 .

Symmetric Construction

To restore symmetry between left- and right-movers we consider a different solution of the

L∞-relations. Let us introduce the 2-product L(1,1)
2 written in the form

L(1,1)
2 =

1

2
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Q,Ξ(1,1)

2 + Ξ̄(1,1)
2

]]
, (6.7)

where Ξ(1,1)
2 is a left gauge product defined by replacing X in the expression for L(1,1)

2 with ξ and

Ξ̄(1,1)
2 is a right gauge product defined by replacing X̄ in L(1,1)

2 with ξ̄. Once we act with Q, two

gauge products Ξ(1,1)
2 and Ξ̄(1,1)

2 produce the same expression: left/right symmetry is manifest.

Denoting the left- and right-moving η zero modes by η and η̄ respectively, we have the relation
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2

]]
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2 ,
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2 , (6.8)
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η, Ξ̄(1,1)

2
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= 0,
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η̄,Ξ(1,1)

2

]]
= 0. (6.9)

Note that the left gauge product Ξ(1,1)
2 is in the right-moving small Hilbert space, while the right

gauge product Ξ̄(1,1)
2 is in the left-moving small Hilbert space. The products L(1,0)

2 and L(0,1)
2

now carry a single X or X̄ insertion, respectively. Pulling Q out we can write

L(1,0)
2 =

[[
Q,Ξ(1,0)

2

]]
, L(0,1)

2 =
[[
Q, Ξ̄(0,1)

2

]]
, (6.10)
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6.1 NS-NS string products

Now the situation is somewhat different from the NS string, since we need to add twice as

much picture and we need to pay attention to how it is distributed between left-moving and

right-moving sectors. We, therefore, can give two constructions: asymmetric and symmetric.

Asymmetric Construction

The easiest way for NS-NS products is to apply the NS construction twice: the first time

to get the correct picture number for left-movers and a second time to get the correct picture

number for the right-movers. More specifically we proceed as follows. Starting with the bosonic

product {L(0,0)
k+1 }∞k=0, we climb a ladder of products {L(k,0)

n+1 }nk=0 and gauge products {Ξ(k,0)
n+1 }nk=1:
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At the top of the ladder, the product L(n,0)
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Now the situation is somewhat different from the NS string, since we need to add twice as

much picture and we need to pay attention to how it is distributed between left-moving and

right-moving sectors. We, therefore, can give two constructions: asymmetric and symmetric.

Asymmetric Construction

The easiest way for NS-NS products is to apply the NS construction twice: the first time

to get the correct picture number for left-movers and a second time to get the correct picture

number for the right-movers. More specifically we proceed as follows. Starting with the bosonic

product {L(0,0)
k+1 }∞k=0, we climb a ladder of products {L(k,0)

n+1 }nk=0 and gauge products {Ξ(k,0)
n+1 }nk=1:
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Q→ L(1,0)
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ξ→ . . .
ξ→ Ξ(n,0)

n+1
Q→ L(n,0)

n+1 . (6.5)

At the top of the ladder, the product L(n,0)
n+1 has the required left-moving picture, but the right-

moving picture is still absent. So we take L(n,0)
n+1 as the input for a second set of recursions which

add rightmoving picture. Starting with L(n,0)
n+1 we climb a second ladder
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n+1
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n+1
L→ L(n,n)

n+1 . (6.6)

This construction requires the fewest auxiliary products of intermediate picture number

in defining the recursion. However, asymmetric insertions of left- and right-moving picture-

changing operators appear. This asymmetry first appears in L(2,2)
3 .

Symmetric Construction

To restore symmetry between left- and right-movers we consider a different solution of the

L∞-relations. Let us introduce the 2-product L(1,1)
2 written in the form
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2
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2 + Ξ̄(1,1)
2

]]
, (6.7)

where Ξ(1,1)
2 is a left gauge product defined by replacing X in the expression for L(1,1)

2 with ξ and

Ξ̄(1,1)
2 is a right gauge product defined by replacing X̄ in L(1,1)

2 with ξ̄. Once we act with Q, two

gauge products Ξ(1,1)
2 and Ξ̄(1,1)

2 produce the same expression: left/right symmetry is manifest.

Denoting the left- and right-moving η zero modes by η and η̄ respectively, we have the relation
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in the same manner as shifted bosonic string products. Provided that the state G shifting these

products satisfies the equation of motion F(G) = 0 of heterotic string field theory in the small

Hilbert space

F(G) ≡ QG +
∞∑

n=1

κn

(n+ 1)!

[
Gn,G

]L
= 0, (9.11)

these shifted products satisfy (strong) L∞-relations19:

∑

σ

∑

k

(−1)|σ|
[
[Aσ(1), . . . , Aσ(k)]

L
G , Aσ(k+1), . . . , Aσ(n)

]L
G = 0. (9.12)

Then, QG becomes a nilpotent operator.

A pure-gauge solution GL of heterotic theory

We can build the pure-gauge solution GL of heterotic string field theory in the ‘small’ Hilbert

space with a finite gauge parameter ηΨ living in the small Hilbert space by successive infinites-

imal gauge transformations. Therefore, the pure-gauge field GL = G(ηΨ) is a function of ηΨ,

defined by the differential equation

∂

∂τ
GL(τηΨ) = QGL(ηΨ), (9.13)

with the initial condition GL(0) = 0, where τ ∈ [0, 1] is a real parameter connecting 0 and

GL(ηΨ). (See also [14, 31], Appendix A, and Appendix B.)

Note that GL is a Grassmann even and ghost-and-picture number (2|− 1, 0) state satisfying

ηGL = 0, ηΨ is a Grassmann odd and ghost-and-picture number (1| − 1, 0) state satisfying

η(ηΨ) = 0, and the heterotic string n-product [A1, . . . , An]L is a Grassmann odd and ghost-and-

picture number (3− 2n|n− 1, 0) product satisfying ∆η[A1, . . . , An]L = 0. For us, Ψ is an NS-NS

string field in the large Hilbert space of left-and-right movers, namely, η̄GL ̸= 0 and η̄Ψ ̸= 0.

Solving the defining equation (9.13) and setting τ = 1, we obtain the explicit form of GL

GL = QηΨ+
κ

2
[QηΨ, ηΨ]L +

κ2

3!

(
[QηΨ, QηΨ, ηΨ]L + [[QηΨ, ηΨ]LηΨ]L

)
+ . . . . (9.14)

An associated field ψX with derivation X

There exist special string fields ψX = ψX(ηΨ) such that

(−1)XXGL = QGLψX, (9.15)

where X is a derivation of heterotic string products:

(−1)XX[A1, . . . , An]
L +

n∑

i=1

(−1)X(A1+···+Ai−1)[A1, . . . ,XAi, . . . An]
L = 0. (9.16)

The defining equation of the field ψX is given by

∂

∂τ
ψX = XηΨ+ κ[ηΨ,ψX]

L, (9.17)

19 For general G, weak L∞-relations hold, which are equivalent to (strong) L∞-relations up to F(G).
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Similarly, since ηGL = 0 and ψX = ηΨX, we obtain

⟨Ψt, δ(η̄GL)⟩ = ⟨Ψt, η̄QGLψδ⟩ = −⟨QGL η̄Ψt,ψδ⟩ = −⟨ψδ, QGL η̄Ψt⟩

= −⟨Ψδ, η(QGL η̄Ψt)⟩ = ⟨Ψδ, η̄QGLψt⟩+ κ⟨ψδ, [ηGL,ψt]
L
GL

⟩

= ⟨Ψδ, ∂t(η̄GL)⟩ − κ⟨ηGL, [Ψδ,ψt]
L
GL

⟩. (9.30)

Hence, the variation δS of the WZW-like action S is given by

δS =

∫ 1

0
dt
(
⟨δΨt, η̄GL(t)⟩+ ⟨Ψt, δ(η̄GL(t))⟩

)

=

∫ 1

0
dt ∂t⟨Ψδ(t), η̄GL(t)⟩ = ⟨Ψδ, η̄GL⟩, (9.31)

which does not include t-parametrized fields. The equation of motion is, therefore, given by

(9.27) and it is independent of t-parametrization of fields.

Since η̄GL is a QGL-, η-, and η̄-exact state, we find that the action is invariant under the

following nonlinear21 gauge transformations

Ψδ = QGLΛ+ η̄Ω, (9.32)

where Λ and Ω are gauge parameters whose ghost-and-picture numbers are (−1|0, 0) and (−1|0, 1)
respectively. Note that Ψδ is an invertible function of δΨ, at least in the expansion in powers of

κ. For instance, an explicit expression for η̄-gauge transformation δΩΨ is given by

δΩΨ = η̄Ω+
κ

2
[ηΨ, η̄Ω]L +

κ2

3

[
η̄Ω, QηΨ, ηΨ

]L
+
κ2

12

[
[η̄Ω, ηΨ], η,Ψ

]L
+O(κ3). (9.33)

10 Relations between A∞/L∞- and WZW-type formulations

In this section, we consider the action for NS closed string field theory. Note that identifying

the graded commutator of open strings with the 2-product of closed strings, we can obtain a

similar result in Berkovits’ theory. The free action in WZW-type formulation is given by

S2 =
1

2
⟨ηV,QV ⟩. (10.1)

Let Φ be a Grassmann-even and ghost-and-picture number (2| − 1) state in the small Hilbert

space. Using the partial gauge fixing condition V = ξΦ, this action becomes

S2 =
1

2
⟨ξΦ, QΦ⟩.

Under the identification of the BPZ inner products in the small and large Hilbert spaces

⟨A,B⟩small ≡ ⟨ξA,B⟩large, (10.2)

the free action in WZW-type formulation S2 reduces to that in L∞-formulation SEKS
2 , where

SEKS
2 :=

1

2
⟨Φ, QΦ⟩small. (10.3)

21Note that Ψδ = ηΩ′ is equivalent to δΨ = ηΩ̃ by parameter redefinition: Ω̃ ≡ Ω′ + κ
2 [ηΨ, Ω̃]L + . . . .
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L(0)
2 L(1)

2 L(0)
3 L(1)

3 L(2)
3 (2.39)

S =
1

2
⟨ηV,QV ⟩+ κ

3!
⟨ηV, [QV, V ]⟩ (2.40)

S =
1

2
⟨ξΦ, QΨ⟩+ κ

3!
⟨ξΦ, [XΦ,Φ]⟩ (2.41)

References

[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

4

L(0)
2 L(1)

2 L(0)
3 L(1)

3 L(2)
3 (2.39)

S =
1

2
⟨ηV,QV ⟩+ κ

3!
⟨ηV, [QV, V ]⟩ (2.40)

S =
1

2
⟨ξΦ, QΨ⟩+ κ

3!
⟨ξΦ, [XΦ,Φ]⟩ (2.41)

References

[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

4

10.1 L∞-gauge in NS string field theory

In the rest, finding the partial gauge fixing condition connecting actions in WZW-type and

L∞-type formulations, we see the equivalence of theses two formulations up to κ2 order.

Cubic term

We consider the 3-point interaction term of WZW-like action:

κS3 =
κ

3!
⟨ηV, [QV, V ]⟩. (10.4)

If we impose the linear partial gauge fixing condition V = ξΦ, this κS3 becomes

κS3 =
κ

3!
⟨QξΦ, [Φ, ξΦ]⟩, (10.5)

which differs from that of L∞-formulation κSEKS
3 . Therefore, to match these actions, we impose

the following partial gauge fixing condition

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ2). (10.6)

With this condition, the kinetic term S2 of WZW-type action supplies the desired term as

S2 =
1

2
⟨ξΦ, QΦ⟩+ κ

3!
⟨ξQΦ, [Φ, ξΦ]⟩. (10.7)

Then, we obtain the following relation

S2 + κS3 = SEKS
2 + κSEKS

3 , (10.8)

where the cubic term of L∞-type action is given by

κSEKS
3 :=

κ

3!
⟨ξΦ,

[
XΦ,Φ

]
⟩. (10.9)

Quartic term

At κ2-order, for example, if we impose the partial gauge fixing condition
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κ

3!
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κ2

4!

(4
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ξ
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3
ξ
[
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− 2

3
ξ
[
ξΦ, [ξΦ,Φ]
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κ2
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4
[ξXΦ, ξΦ,Φ] +

1

4
ξX[ξΦ,Φ,Φ]

)
, (10.10)

we obtain the following relation

S2 + κS3 + κ2S4 = SEKS
2 + κSEKS

3 + κ2SEKS
4 , (10.11)

where the quartic term of L∞-type action SEKS
4 is given by
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4
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]
⟩
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− κ2

4!
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]
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4!
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L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
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ξ̄[ξ̄Φ,Φ]L +O(κ3)
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(
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]L
+ ξ̄
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ξ̄[Φ,Φ]L, ξ̄Φ
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3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)
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Nonlinear gauge invariance

e−ΦδeΦ = QGΛ+ ηΩ (3.31)

G(tΦ) = e−tΦQetΦ (3.32)

QG + G ∗ G = 0 (3.33)

Λ←→ Φ (3.34)

e−ΛQeΛ (3.35)

S =

∫ 1

0
dt⟨ηΦ,G(tΦ)⟩ (3.36)

NS closed SFT

S =

∫ 1

0
dt⟨ηV,G(tV )⟩ (3.37)

NS string field V has ghost and picture number (1|0). BPZ inner product vanishes except for

(4|− 1).

EOM

ηG(V ) = 0 (3.38)

3.2 NS-NS action

NS-NS string field Φ has ghost and picture number (0|0, 0). BPZ inner product vanishes

except for (3|− 1,−1).

S =

∫ 1

0
dt⟨η̄Ψ,GL(t)⟩ (3.39)

S = (3.40)

A formulae

QV = 0 (A.41)

⟨⟨ξξ̄V,V, XX̄V⟩⟩ (A.42)

5

It is very important to obtain clear understandings of the geometrical meaning of theory,

gauge fixing [31,32], the relation between two formulations: large- and small-space formulations.

However, our large-space formulation is purely algebraic and these aspects remain mysterious.
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A Heterotic theory in the small Hilbert space

The action for heterotic string field theory in the small Hilbert space is

S =
1

2
⟨Φ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨Φ, [Φn,Φ]L⟩, (A.103)

where the heterotic string field Φ is a ghost-and-picture number (2| − 1, 0) state in the small

Hilbert space and picture-changing operators inserted product [A1, . . . , An]L given by [27] carries

ghost-and-picture number (3 − 2n|n − 1, 0). This action is invariant under the following gauge

transformation [5, 6]

δΦ = Qλ+
∞∑

n=1

κn

n!
[Φn,λ]L ≡ QΦλ, (A.104)

where λ is a gauge parameter carrying ghost-and-picture number (1|− 1, 0).

Just as bosonic theory [4, 6], the equation of motion is given by

QΦ+
∞∑

n=1

κn

(n+ 1)!
[Φn,Φ]L = 0. (A.105)

A pure-gauge G is constructed by infinitisimal gauge transformations [5,18]. Therefore, G is

defined by the following differential equation

∂

∂τ
G = Qλ+

∞∑

n=1

κn

n!
[Gn,λ]L = QGλ. (A.106)

B Some identities

BPZ-properties

The c−0 -inserted BPZ inner product ⟨A,B⟩ := ⟨bpz(A)|c−0 |B⟩, bosonic or heterotic string

products, and a derivation operator X satisfy

⟨A,B⟩ = (−)(A+1)(B+1)⟨B,A⟩, (B.107)

⟨[A0, . . . , An−1], An⟩ = (−)A0+···+An−1⟨A0, [A1, . . . , An]⟩, (B.108)

⟨XA,B⟩ = (−)X⟨A,XB⟩, (B.109)
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Hence, the associated field Ψδ

Ψδ = δΨ+
κ

2
[ηΨ, δΨ]L +

κ2

3!

(
[ηΨ, ηQΨ, δΨ]L + 2

[
ηΨ, [ηΨ, δΨ]L

]L)
+ . . . , (4.93)

defined by ∂τΨδ = δΨ+ κ[ηΨ,Ψδ]LGL
in (3.82) determines Wn-terms.

The WZW-like action

Let Ψ(t) be a t-parametrized NS-NS string field satisfying Ψ(0) = 0 and Ψ(1) = Ψ. We can

extend the equation (4.89) to this Ψ(t). Note that η̄GL is a QGL-, η̄-, and η-exact state and

∂t(QGLΨδ) = δ(QGLΨt) holds. The t-parametrized associated field Ψt is equivalent to Ψ plus

η-exact terms, provided that the t-parametrization is linear:Ψ(t) = tΨ.

Thus, we propose the following WZW-like action

S =
2

α′

∫ 1

0
dt⟨η̄Ψt,GL(t)⟩, (4.94)

which reduces to (4.89) or the familiar WZW form (see Appendix B)

S|Ψ(t)=tΨ =
1

α′

(
⟨Ψη̄,GL⟩+ κ

∫ 1

0
dt⟨Ψt, [Ψη̄(t),GL(t)]

L
GL

⟩
)
, (4.95)

if we set Ψ(t) = tΨ. Note that the (n+1)-point vertex includes n insertions of η and the action

S is invariant under the linear2 gauge transformation δηΨ = η Ω̃.

The equation of motion is given by

η̄ GL =

∫ 1

0
dτ

(
ηη̄QGLΨ

)
= 0, (4.96)

which is derived in subsection 4.2. Although the action includes the integral over a real parameter

t, the action S, the variation δS, the equation of motion η̄GL = 0, and gauge transformations

are independent of the t-parametrization or t-parametrized path Ψ(t).

4.2 Nonlinear gauge invariance

In this subsection, we derive the equation of motion and the closed form expression of nonlinear

gauge transformations.

For this purpose, we prove that the variation δS does not includes t and is given by

δS = ⟨Ψδ, η̄ GL⟩. (4.97)

Using the relation ηQGL(∂tΨδ−δΨt+κ[Ψt,ψδ]LGL
) = 0, which is equivalent to ∂t(δGL) = δ(∂tGL)

with ηΨX = ψX, we find that the following equation holds regardless of t-parametrization

⟨δΨt, η̄GL⟩ = −⟨δΨt, QGLψη̄⟩ = −⟨∂tΨδ + κ[Ψδ,ψt]
L, QGLΨη̄⟩

= ⟨∂tΨδ, η̄GL⟩+ κ⟨ηGL, [Ψδ,ψt]
L
GL

⟩. (4.98)

2Note that, however, GL and Ψt include a lot of ηΨ and as seen in 4.2, it does not mean that there are no

gauge transformations including nonlinear terms of ηΨ.
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⟨Ψη̄,GL⟩+ κ

∫ 1

0
dt⟨Ψt, [Ψη̄(t),GL(t)]

L
GL

⟩
)
, (4.95)

if we set Ψ(t) = tΨ. Note that the (n+1)-point vertex includes n insertions of η and the action

S is invariant under the linear2 gauge transformation δηΨ = η Ω̃.

The equation of motion is given by

η̄ GL =

∫ 1

0
dτ

(
ηη̄QGLΨ

)
= 0, (4.96)

which is derived in subsection 4.2. Although the action includes the integral over a real parameter

t, the action S, the variation δS, the equation of motion η̄GL = 0, and gauge transformations

are independent of the t-parametrization or t-parametrized path Ψ(t).

4.2 Nonlinear gauge invariance

In this subsection, we derive the equation of motion and the closed form expression of nonlinear

gauge transformations.

For this purpose, we prove that the variation δS does not includes t and is given by

δS = ⟨Ψδ, η̄ GL⟩. (4.97)

Using the relation ηQGL(∂tΨδ−δΨt+κ[Ψt,ψδ]LGL
) = 0, which is equivalent to ∂t(δGL) = δ(∂tGL)

with ηΨX = ψX, we find that the following equation holds regardless of t-parametrization

⟨δΨt, η̄GL⟩ = −⟨δΨt, QGLψη̄⟩ = −⟨∂tΨδ + κ[Ψδ,ψt]
L, QGLΨη̄⟩

= ⟨∂tΨδ, η̄GL⟩+ κ⟨ηGL, [Ψδ,ψt]
L
GL

⟩. (4.98)

2Note that, however, GL and Ψt include a lot of ηΨ and as seen in 4.2, it does not mean that there are no

gauge transformations including nonlinear terms of ηΨ.
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It is very important to obtain clear understandings of the geometrical meaning of theory,

gauge fixing [31,32], the relation between two formulations: large- and small-space formulations.

However, our large-space formulation is purely algebraic and these aspects remain mysterious.
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A Heterotic theory in the small Hilbert space

The action for heterotic string field theory in the small Hilbert space is

S =
1

2
⟨Φ, QΦ⟩+

∞∑

n=1

κn

(n+ 2)!
⟨Φ, [Φn,Φ]L⟩, (A.103)

where the heterotic string field Φ is a ghost-and-picture number (2| − 1, 0) state in the small

Hilbert space and picture-changing operators inserted product [A1, . . . , An]L given by [27] carries

ghost-and-picture number (3 − 2n|n − 1, 0). This action is invariant under the following gauge

transformation [5, 6]

δΦ = Qλ+
∞∑

n=1

κn

n!
[Φn,λ]L ≡ QΦλ, (A.104)

where λ is a gauge parameter carrying ghost-and-picture number (1|− 1, 0).

Just as bosonic theory [4, 6], the equation of motion is given by

QΦ+
∞∑

n=1

κn

(n+ 1)!
[Φn,Φ]L = 0. (A.105)

A pure-gauge G is constructed by infinitisimal gauge transformations [5,18]. Therefore, G is

defined by the following differential equation

∂

∂τ
G = Qλ+

∞∑

n=1

κn

n!
[Gn,λ]L = QGλ. (A.106)

B Some identities

BPZ-properties

The c−0 -inserted BPZ inner product ⟨A,B⟩ := ⟨bpz(A)|c−0 |B⟩, bosonic or heterotic string

products, and a derivation operator X satisfy

⟨A,B⟩ = (−)(A+1)(B+1)⟨B,A⟩, (B.107)

⟨[A0, . . . , An−1], An⟩ = (−)A0+···+An−1⟨A0, [A1, . . . , An]⟩, (B.108)

⟨XA,B⟩ = (−)X⟨A,XB⟩, (B.109)
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V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ3)

+
κ2

4!

(
ξ
[
ξΦ, (Qξ +X)Φ,Φ

]
+ ξ

[
ξ[Φ,Φ], ξΦ

]
+

2

3
ξ
[
ξ[ξΦ,Φ],Φ

]
+

2

3

[
ξ[ξΦ,Φ], ξΦ

])

(A.132)

L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)

参考文献
[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

13

	

	

ー	

L∞-gauge in the NS sector.

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ3)

+
κ2

4!

(
ξ
[
ξΦ, (Qξ +X)Φ,Φ

]
+ ξ

[
ξ[Φ,Φ], ξΦ

]
+

2

3
ξ
[
ξ[ξΦ,Φ],Φ

]
+

2

3

[
ξ[ξΦ,Φ], ξΦ

])

(A.132)

L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)

参考文献
[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

13

L∞-gauge in the NS sector.

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ3)

+
κ2

4!

(
ξ
[
ξΦ, (Qξ +X)Φ,Φ

]
+ ξ

[
ξ[Φ,Φ], ξΦ

]
+

2

3
ξ
[
ξ[ξΦ,Φ],Φ

]
+

2

3

[
ξ[ξΦ,Φ], ξΦ

])

(A.132)

L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)

参考文献
[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

13

L∞-gauge in the NS sector.

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ3)

+
κ2

4!

(
ξ
[
ξΦ, (Qξ +X)Φ,Φ

]
+ ξ

[
ξ[Φ,Φ], ξΦ

]
+

2

3
ξ
[
ξ[ξΦ,Φ],Φ

]
+

2

3

[
ξ[ξΦ,Φ], ξΦ

])

(A.132)

L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)

参考文献
[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

13



Erler, Konopka, Sachs 14’ 

Witten’s Cubic Theory  

	 	

	 	

	

	

	

	

	

	

Berkovits 95’ 

Berkovits, Okawa, Zwiebach 04’ 

H.M 14’ 

Witten  

	 	



	



	

・ 	

	

	

	

	

	



	

		

	

		



	

	

	

・ 	

・  	

	



	

	L∞-gauge in the NS sector.

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ3)

+
κ2

4!

(
ξ
[
ξΦ, (Qξ +X)Φ,Φ

]
+ ξ

[
ξ[Φ,Φ], ξΦ

]
+

2

3
ξ
[
ξ[ξΦ,Φ],Φ

]
+

2

3

[
ξ[ξΦ,Φ], ξΦ

])

(A.132)

L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)

参考文献
[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

13

L∞-gauge in the NS sector.

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ3)

+
κ2

4!

(
ξ
[
ξΦ, (Qξ +X)Φ,Φ

]
+ ξ

[
ξ[Φ,Φ], ξΦ

]
+

2

3
ξ
[
ξ[ξΦ,Φ],Φ

]
+

2

3

[
ξ[ξΦ,Φ], ξΦ

])

(A.132)

L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)

参考文献
[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

13

L∞-gauge in the NS sector.

V = ξΦ+
κ

3!
ξ[ξΦ,Φ] +O(κ3)

+
κ2

4!

(
ξ
[
ξΦ, (Qξ +X)Φ,Φ

]
+ ξ

[
ξ[Φ,Φ], ξΦ

]
+

2

3
ξ
[
ξ[ξΦ,Φ],Φ

]
+

2

3

[
ξ[ξΦ,Φ], ξΦ

])

(A.132)

L∞-gauge in the NS-NS sector.

Ψ = ξV̄ V̄ ∈ Ker[η] (A.133)

and

V̄ = ξ̄Φ+
κ

3!
ξ̄[ξ̄Φ,Φ]L +O(κ3)

+
κ2

4!

(
ξ̄
[
ξ̄Φ, (Qξ̄ +X)Φ,Φ

]L
+ ξ̄

[
ξ̄[Φ,Φ]L, ξ̄Φ

]L
+

2

3
ξ̄
[
ξ̄[ξ̄Φ,Φ]L,Φ

]
+

2

3

[
ξ̄[ξ̄Φ,Φ], ξ̄Φ

]L)

(A.134)

Thus, the WZW-like action reduces to the EKS action of asymmetric construction under the

following L∞-gauge.

Ψ = ξξ̄Φ+
κ

3!
ξξ̄
[
ξ̄Φ,Φ

]
+ . . . (A.135)

参考文献
[1] N. Berkovits, “SuperPoincare invariant superstring field theory,” Nucl. Phys. B 450 (1995)

90 [Erratum-ibid. B 459 (1996) 439] [hep-th/9503099].

[2] N. Berkovits, “A New approach to superstring field theory,” Fortsch. Phys. 48 (2000) 31

[hep-th/9912121].

[3] N. Berkovits, Y. Okawa and B. Zwiebach, “WZW-like action for heterotic string field the-

ory,” JHEP 0411 (2004) 038 [hep-th/0409018], Y. Okawa and B. Zwiebach, “Heterotic

string field theory,” JHEP 0407 (2004) 042 [hep-th/0406212].

[4] H. Matsunaga, “Construction of a Gauge-Invariant Action for Type II Superstring Field

Theory,” arXiv:1305.3893 [hep-th]. (To be replaced.)

13

	



・ 	

	

・ 	

	

	

　　　 	

	



Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

	

	

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

	

where

Q · I = Q
(
e−Λ ∗ eΛ

)
= 0 i.e. e−Λ

(
QeΛ

)
= −

(
Qe−Λ

)
eΛ (2.9)

Two important points:

1) Gauge (BRST in BV) invariance = (Q+M)2 = 0

Note that ω is a symplectic form and M is a string product

ω(Ψ1,Ψ2) = (−)Ψ1+1⟨Ψ1,Ψ2⟩ (2.10)

M(Ψ1,Ψ2) = (−)Ψ1+1Ψ1 ∗Ψ2 (2.11)

Then, the action becomes

S =
1

2
ω(Ψ, QΨ) +

1

3
ω
(
Ψ,M(Ψ,Ψ)

)
(2.12)

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.13)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.14)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.15)

= QG(tΛ)(dtΛ) (2.16)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.17)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.19)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.20)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.18)

3

where

Q · I = Q
(
e−Λ ∗ eΛ

)
= 0 i.e. e−Λ

(
QeΛ

)
= −

(
Qe−Λ

)
eΛ (2.9)

Two important points:

1) Gauge (BRST in BV) invariance = (Q+M)2 = 0

Note that ω is a symplectic form and M is a string product

ω(Ψ1,Ψ2) = (−)Ψ1+1⟨Ψ1,Ψ2⟩ (2.10)

M(Ψ1,Ψ2) = (−)Ψ1+1Ψ1 ∗Ψ2 (2.11)

Then, the action becomes

S =
1

2
ω(Ψ, QΨ) +

1

3
ω
(
Ψ,M(Ψ,Ψ)

)
(2.12)

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.13)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.14)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.15)

= QG(tΛ)(dtΛ) (2.16)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.17)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.19)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.20)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.18)

3

where

Q · I = Q
(
e−Λ ∗ eΛ

)
= 0 i.e. e−Λ

(
QeΛ

)
= −

(
Qe−Λ

)
eΛ (2.9)

Two important points:

1) Gauge (BRST in BV) invariance = (Q+M)2 = 0

Note that ω is a symplectic form and M is a string product

ω(Ψ1,Ψ2) = (−)Ψ1+1⟨Ψ1,Ψ2⟩ (2.10)

M(Ψ1,Ψ2) = (−)Ψ1+1Ψ1 ∗Ψ2 (2.11)

Then, the action becomes

S =
1

2
ω(Ψ, QΨ) +

1

3
ω
(
Ψ,M(Ψ,Ψ)

)
(2.12)

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.13)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.14)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.15)

= QG(tΛ)(dtΛ) (2.16)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.17)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.19)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.20)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.18)

3

where

Q · I = Q
(
e−Λ ∗ eΛ

)
= 0 i.e. e−Λ

(
QeΛ

)
= −

(
Qe−Λ

)
eΛ (2.9)

Two important points:

1) Gauge (BRST in BV) invariance = (Q+M)2 = 0

Note that ω is a symplectic form and M is a string product

ω(Ψ1,Ψ2) = (−)Ψ1+1⟨Ψ1,Ψ2⟩ (2.10)

M(Ψ1,Ψ2) = (−)Ψ1+1Ψ1 ∗Ψ2 (2.11)

Then, the action becomes

S =
1

2
ω(Ψ, QΨ) +

1

3
ω
(
Ψ,M(Ψ,Ψ)

)
(2.12)

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.13)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.14)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.15)

= QG(tΛ)(dtΛ) (2.16)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.17)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.19)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.20)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.18)

3

	

	



Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

	

	

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

	

	



Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.11)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.12)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.13)

= QG(tΛ)(dtΛ) (2.14)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.15)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.17)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.18)

Zwiebach’s closed SFT

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)

3

Plan of Today’s talk:

1) Review of N = 0 SFT and recent developments

2) WZW-like formulation

3) NS-NS action

2 Part 2 (20 minutes)

2.1 Review of SFT

Witten’s Cubic theory

S =
1

2
⟨Ψ, QΨ⟩+ 1

3
⟨Ψ,Ψ ∗Ψ⟩ (2.2)

EOM

QΨ+Ψ2 = 0 (2.3)

Nonlinear gauge transformations

δΨ = QΛ+ [[Ψ,Λ]] (2.4)

Pure-gauge solution

e−ΛQeΛ : Q
(
e−ΛQeΛ

)
+

(
e−ΛQeΛ

)
∗
(
e−ΛQeΛ

)
(2.5)

=
(
Qe−Λ

)
∗
(
QeΛ

)
−
(
Qe−Λ

)
eΛ ∗ eΛ

(
QeΛ

)
= 0 (2.6)

where

Q · I = Q
(
e−Λ ∗ eΛ

)
= 0 i.e. e−Λ

(
QeΛ

)
= −

(
Qe−Λ

)
eΛ (2.7)

Two important points:

1) Gauge (BRST in BV) invariance = (Q+M)2 = 0

Note that ω is a symplectic form and M is a string product

ω(Ψ1,Ψ2) = (−)Ψ1+1⟨Ψ1,Ψ2⟩ (2.8)

M(Ψ1,Ψ2) = (−)Ψ1+1Ψ1 ∗Ψ2 (2.9)

Then, the action becomes

S =
1

2
ω(Ψ, QΨ) +

1

3
ω
(
Ψ,M(Ψ,Ψ)

)
(2.10)
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⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ, [Ψ,Ψ]⟩+

∞∑

n=3

κn

(n+ 1)!
⟨Ψ, [Ψ, . . . ,Ψ]n⟩ (2.19)

EOM

QΨ+
κ

2
[Ψ,Ψ] +

κ2

3!
[Ψ,Ψ,Ψ] +

κ3

4!
[Ψ,Ψ,Ψ,Ψ] · · · = 0 (2.20)

Nonlinear gauge transformations

δΨ = QΛ+ κ[Ψ,Λ] +
κ2

2
[Ψ,Ψ,Λ] +

κ3

3!
[Ψ,Ψ,Ψ,Λ] . . . (2.21)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.16)
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Rewriting action

S =
1

2
⟨Ψ, QΨ⟩+ κ

3!
⟨Ψ,M2(Ψ

2)⟩+ κ2

4!
⟨Ψ,M3(Ψ

3)⟩+ κ3

5!
+ ⟨Ψ,M4(Ψ

4)⟩+ . . . (2.22)

String products (Vertices): Q+M2 +M3 +M4 + . . .

Gauge invariance: (Q+M2 +M3 + . . . )2 = 0

Shifted BRST operator

QΨΛ = QΛ+
∞∑

n=1

κn

n!
[Ψn,Λ] (2.23)

Pure-gauge solution for closed SFT

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.24)

2.2 Recent developments of small-space theory

3 Part 3 (20 minutes)

3.1 Review of WZW-like formulation

Free action

S =
1

2
⟨ηΦ, QΦ⟩ (3.25)

Small and Large

ηΦ = φ (3.26)

EOM

QηΦ = 0 (3.27)

Gauge invariance

δΦ = QGΛ+ ηΩ (3.28)

NS open SFT

S =
1

2
⟨e−ΦQeΦ, e−ΦηeΦ⟩+ 1

2

∫ 1

0
dt⟨e−tΦ∂te

tΦ,
[[
e−tΦQetΦ, e−tΦηetΦ

]]
⟩ (3.29)

NS string field Φ has ghost and picture number (0|0). BPZ inner product ⟨A,B⟩ vanishes except
for (2|− 1).

EOM

η
(
e−ΦQeΦ

)
= 0 (3.30)
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where

Q · I = Q
(
e−Λ ∗ eΛ

)
= 0 i.e. e−Λ

(
QeΛ

)
= −

(
Qe−Λ

)
eΛ (2.9)

Two important points:

1) Gauge (BRST in BV) invariance = (Q+M)2 = 0

Note that ω is a symplectic form and M is a string product

ω(Ψ1,Ψ2) = (−)Ψ1+1⟨Ψ1,Ψ2⟩ (2.10)

M(Ψ1,Ψ2) = (−)Ψ1+1Ψ1 ∗Ψ2 (2.11)

Then, the action becomes

S =
1

2
ω(Ψ, QΨ) +

1

3
ω
(
Ψ,M(Ψ,Ψ)

)
(2.12)

Gauge invariance (and BRST invariance of the BV action) is equivalent to the nilpotency of

products Q+M :

(Q+M)2 = Q2Ψ+QM(Ψ,Ψ) +M(QΨ,Ψ) + (−)ΨM(Ψ, QΨ) (2.13)

+M(M(Ψ,Ψ),Ψ) + (−)ΨM(Ψ,M(Ψ,Ψ)) = 0 (2.14)

2) Pure-gauge

Recall the form of nonlinear gauge transformations δΨ = QΛ+ [[Ψ,Λ]] (The Ψ-shifted BRST

operator QΨ = Q+ [[Ψ, ]] appears! namely, δΨ = QΨΛ) and a pure-gauge G is given by (linear

path) successive infinitesimal gauge transformation around itself (the starting point is zero).

Note that the gauge transformation around 0 is G0 = QΛ, the second one is G1 = QΛ +

[[G1,Λ]] = QΛ+ [[QΛ,Λ]], the third is G3 = QΛ+ [[QΛ,Λ]] + 1
2

[[
[[QΛ,Λ]],Λ

]]
, and so on.

G(tΛ+ dtΛ)− G(tΛ) = Q(dtΛ) +
[[
G(tΛ), dtΛ

]]
(2.15)

= QG(tΛ)(dtΛ) (2.16)

So we obtain the defining equation of pure-gauge

∂

∂t
G(tΛ) = QG(tΛ)Λ (2.17)

We choose a straight line connecting 0 and Λ and parametrized the path as tΛ. The final

pure-gauge G corresponds to G(tΛ)|t=1. We can quickly check e−ΛQeΛ is a solution1.

∂te
−tΛQetΛ = −Λ

(
e−tΛQetΛ

)
+ e−tΛQ

(
etΛ ∗ Λ

)
(2.19)

= QΛ+
[[
e−tΛQetΛ,Λ

]]
(2.20)

1 Let be x = [[Λ, ]]. Note that
∑ tn+1

(n+1)!x
n(QΛ) = e−tΛQetΛ.

G(tΛ) = QΛ+

∫
dt[[QΛ,Λ]] + . . . , ∂t

etx − 1
x

=
xetx

x
= etX (2.18)
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