WZW-type action for NS-INS SFT
\& its gauge fixing conditions

Hiroaki Matsunaga Univ. Tokyo
(with Keiyu Goto)

Komaba, Mar, $5^{\text {th }}, 2015$.

Introduction: Superstring Field Theory

Witten's Cubic Theory

Witten

Small-space theory
(A_{∞} / L_{∞}-type actions)
NS open
NS closed

NS-INS closed
Erler, Konopka, Sachs 14'

Large-space theory
(WZW-type actions)

NS open
Berkovits 95'
NS closed
Berkovits, Okawa, Zwiebach 04’
NS-NS closed
H.M $\mathbf{1 4}^{\prime}$

Gauge fixing . . . Not Yet

Introduction: Superstring Field Theory

Witten's Cubic Theory

Witten

Small-space theory
(A_{∞} / L_{∞}-type actions)

NS open

NS closed

NS-INS closed
Erler, Konopka, Sachs 14'
Gauge fixing . . . OK

Large-space theory
(WZW-type actions)
NS open
Berkovits 95’
NS closed
Berkovits, Okawa, Zwiebach 04’
NS-NS closed

H.M 14'

Gauge fixing . . . Not Yet

Superstring field theory action

- difficulties -

Bosonic open String Fields

$$
\begin{array}{cccc}
\text { Vertex Op. } & & \text { String Field } & \text { \# }_{\mathrm{q}} \\
\mathcal{V}(z)=c(z) e^{k \cdot X} & \rightarrow & \Psi & \mathbf{1}
\end{array}
$$

Free Action : $\quad S=\frac{1}{2}\langle\Psi, Q \Psi\rangle \quad\left(\#_{\mathrm{qh}}\right.$ of $\left.\mathrm{Q}=1\right)$
$\langle A, B\rangle: B P Z$ inner procluct \rightarrow ghost \# anomaly !!
$\rightarrow\langle A, B\rangle=O$ except for ghost $\#$ of $A+B=3$
\rightarrow Ghost \# \sim Grading (like a differential form)

Bosonic open SFT Action

Witten's Cubic Action :

$$
S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{1}{3}\langle\Psi, \Psi * \Psi\rangle
$$

EOM :

$$
Q \Psi+\Psi^{2}=0
$$

Gauge transf. :

$$
\delta \Psi=Q \Lambda+\llbracket \Psi, \Lambda \rrbracket
$$

Pure-gauge :

$$
e^{-\Lambda} Q e^{\Lambda}
$$

Interacting terms

Witten's Mid Point Interaction :

Disk $\times 3 \quad$ Z

$S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{1}{3}\langle\Psi, \Psi * \Psi\rangle$

\rightarrow Feynman Diagrams reproduce on-shell amp.
Note that $\#_{\mathrm{gh}}$ of $\Psi=1$ andl $\#_{\mathrm{gh}}$ of $Q=1$

Superstring Fields

Vertex Op.
Small : $\mathcal{V}(z)=c(z) \delta(\gamma) V_{m} \quad \rightarrow \quad \Psi$

String Field ($\#_{\mathrm{gh}} I \#_{\mathrm{pic}}$)
$(1 \mid-1)$

In the "small" Hillbert space. . . (βr-system)
$\langle A, B\rangle: B P Z$ product \rightarrow ghost \& picture \# anomaly !!
$\rightarrow\langle A, B\rangle=0$ except for $\left(\#_{\mathrm{gh}} \mid \#_{\mathrm{pic}}\right)$ of $A+B=(3 \mid-2)$
\rightarrow Grading \sim Ghost \& Picture \# (like a super-form)
\rightarrow Interacting term has problem !!

Attempt: Witten's Cubic Action

Witten's Cubic Action :

$$
S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{1}{3}\langle\Psi, X(i)(\Psi * \Psi)\rangle
$$

$X(i)$: Picture Changing Operator (Mid Point !!)

This Product is Associative !!

Attempt: Witten's Cubic Action

- OPE of PCOs $X(i)$ is singular. . .
\rightarrow Contact terms become DIVERGENT !!
- Broken gauge invariance. . .

Developments of technique :
Large-space actions (WZW-like actions)
Small-space actions (Regularized ver. of Witten theory)

Plan
O. Introduction

1. Review of NS theory
2. NS-INS Actions
3. Gauge fixing of WZW-like actions

1. Review of INS theory

- large-space -
(WZW-like action)

NS WZW-like Action

$$
\begin{array}{ccc}
\text { Vertex Op. } & \text { String Field } & \left(\#_{\mathrm{qh}} \text { I \# }{ }_{\mathrm{pic}}\right) \\
\text { Large : } \mathcal{V}(z)=\xi(z) c e^{-\phi} V_{m} & \rightarrow \quad \Phi & (0 \mid 0)
\end{array}
$$

In the "large" Hillbert space. . . ($\eta \xi \phi$-system)
$\rightarrow\langle A, B\rangle=0$ except for $\left(\#_{\text {gh }} \mid \#_{\text {pic }}\right)$ of $A+B=(2 \mid-1)$
Note that "\# of Q " $=(1 \mid 0)$ ancl "\# of η " $=(1 \mid-1)$

Free Action $\quad S=\frac{1}{2}\langle\eta \Phi, Q \Phi\rangle$

NS WZW-like Action

$$
\begin{array}{lll}
\text { Free Action } & \text { EOM } & \text { Gauge transf. } \\
S=\frac{1}{2}\langle\eta \Phi, Q \Phi\rangle & Q \eta \Phi=0 & \delta \Phi=Q \Lambda+\eta \Omega
\end{array}
$$

- Interacting terms . . . ??

Note that "\# of ϕ " $=(\mathrm{O} \mid \mathrm{O})$!
\rightarrow We can make a function of ϕ
without 'picture-changing problems'.

Berkovits' open Superstring Field Theory

Berkovits' WZW-like Action

$$
S=\frac{1}{2}\left\langle e^{-\Phi} Q e^{\Phi}, e^{-\Phi} \eta e^{\Phi}\right\rangle+\frac{1}{2} \int_{0}^{1} d t\left\langle e^{-t \Phi} \partial_{t} e^{t \Phi}, \llbracket e^{-t \Phi} Q e^{t \Phi}, e^{-t \Phi} \eta e^{t \Phi} \rrbracket\right\rangle
$$

EOM : $\quad \eta\left(e^{-\Phi} Q e^{\Phi}\right)=0$

Gauge transf. : $\quad e^{-\Phi} \delta e^{\Phi}=Q_{\mathcal{G}} \Lambda+\eta \Omega$

$$
\begin{aligned}
& \qquad Q_{\mathcal{G}}:=Q+\llbracket e^{-\Phi}\left(Q e^{\Phi}\right), \rrbracket \\
& \rightarrow \quad(\text { Formal) Pure-gauge is the key }
\end{aligned}
$$

For example, WZW model can be rewrite. . .

1. Familiar WZW action

$$
S=\frac{1}{2 g^{2}} \int d^{2} z \int_{0}^{1} d t \operatorname{Tr}\left(\partial_{t}\left(A_{z} A_{\bar{z}}\right)+A_{t}\left[A_{z}, A_{\bar{z}}\right]\right)
$$

$$
\begin{gathered}
A_{i}=e^{-\Phi}\left(\partial_{i} e^{\Phi}\right) \\
i=t, z, \bar{z}
\end{gathered}
$$

Flatness conclitions : $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]=0$

$$
\begin{aligned}
S & =\frac{1}{2 g^{2}} \int d^{2} z \int_{0}^{1} d t \operatorname{Tr}\left(\left(\partial_{z} A_{t}\right) A_{\bar{z}}+A_{z}\left(\partial_{\bar{z}} A_{t}\right)+A_{t}\left[A_{z}, A_{\bar{z}}\right]\right) \leftarrow \boldsymbol{F}_{\mathbf{t z}}, \boldsymbol{F}_{\mathbf{t} \bar{z}}=\mathbf{O} \\
& \left.=\frac{1}{2 g^{2}} \int d^{2} z \int_{0}^{1} d t \operatorname{Tr}\left(\left(\partial_{z} A_{t}\right) A_{\bar{z}}-\left(\partial_{z} A_{\bar{z}}\right) A_{t}\right)\right)=\frac{1}{g^{2}} \int d^{2} z \int_{0}^{1} d t \operatorname{Tr}\left(\left(\partial_{z} A_{t}\right) A_{\bar{z}}\right)
\end{aligned}
$$

2. WZW-like form (appears in SFT)

$$
F_{\mathrm{z} \overline{\mathrm{z}}}=0
$$

$$
S=\frac{1}{g^{2}} \int d^{2} z \int_{0}^{1} d t \operatorname{Tr}\left(\left(\partial_{z} A_{t}\right) A_{\bar{z}}\right)
$$

Rewriting Berkovits' Action

1. Familiar WZW form

$$
S=-\frac{1}{2 g^{2}} \int_{0}^{1} d t\left\langle\left\langle\partial_{t}\left(A_{\eta} A_{Q}\right)+A_{t}\left\{A_{Q}, A_{\eta}\right\}\right\rangle\right\rangle
$$

$A_{X}:=e^{-t \Phi}\left(X e^{t \Phi}\right)$

$$
X=Q, \eta, \delta, \partial_{t}
$$

Conclitions : $\quad X A_{Y}-(-)^{X Y} Y A_{X}+\llbracket A_{X}, A_{Y} \rrbracket=0$

$$
\begin{aligned}
& \left.=\frac{1}{2}\left\langle\left\langle\underline{\left(\partial_{t} A_{\eta}\right.}+\left[A_{t}, A_{\eta}\right]\right) A_{Q}\right\rangle\right\rangle+\frac{1}{2}\left\langle\left\langle A_{\eta}\left(\underline{\left.\partial_{t} A_{Q}\right)}\right\rangle\right\rangle\right. \\
& =\frac{1}{2}\left\langle\left\langle\left(\eta A_{t}\right) A_{Q}\right\rangle\right\rangle+\frac{1}{2}\left\langle\left\langle A_{\eta}\left(Q^{\prime} A_{t}\right)\right\rangle\right\rangle \\
& =\frac{1}{2}\left\langle\left\langle\left(\eta A_{t}\right) A_{Q}\right\rangle\right\rangle-\frac{1}{2}\left\langle\left\langle\left(\eta A_{Q}\right) A_{t}\right\rangle\right\rangle=\left\langle\left\langle\left(\eta A_{t}\right) A_{Q}\right\rangle\right\rangle
\end{aligned}
$$

2. WZW-like form (funclamental) Pure-gauge

$$
S=\int_{0}^{1}\left\langle\eta A_{\partial_{t}}, A_{Q}\right\rangle=\int_{0}^{1} d t\langle\eta \Phi, \underline{\mathcal{G}(t \Phi)\rangle}
$$

How to make 'large-space' NS action?

1. Consider a 'bosonic' pure-gauge solution.

$$
\frac{\partial}{\partial t} \mathcal{G}(t)=Q_{\mathcal{G}(t)} \Lambda
$$

2. Identify NS string fields with 'bosonic' gauge parameters.

$$
\Phi=\Lambda \quad \text { Ghost \& picture \#s match!! }
$$

Then, we obtain the 'large-space' NS action.

$$
S=\int_{0}^{1} d t\langle\eta \Phi, \mathcal{G}(t \Phi)\rangle
$$

Heterotic String Field Theory

WZW-like Action

$$
S=\int_{0}^{1} d t\langle\eta V, \mathcal{G}(t V)\rangle
$$

EOM

$$
\eta \mathcal{G}(V)=0
$$

Gauge transf.
Bosonic pure-gauge

$$
\frac{\partial}{\partial t} \mathcal{G}(t \Lambda)=\underline{Q \mathcal{G}(t \Lambda)} \Lambda
$$

(Function of $\delta \vee$) $=\mathrm{Qg}_{\mathrm{g}} \cap+\eta \Omega$

- small-space -
(Regularized ver. of Witten theory)

Attempt: Witten's Cubic Action

Witten's Cubic Action :

$$
S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{1}{3}\langle\Psi, X(i)(\Psi * \Psi)\rangle
$$

$X(i)$: Picture Changing Operator (Mid Point !!)

But contact terms become DIVERGENT !!

Resolving Witten's Theory
Using line integral $X=\int \frac{d z}{2 \pi i} f(z) X(z)$, we introcluce
New product :

$$
M_{2}\left(\Psi_{1}, \Psi_{2}\right)=\frac{1}{3}\left(X\left(\Psi_{1} * \Psi_{2}\right)+\left(X \Psi_{1}\right) * \Psi_{2}+\Psi_{1} *\left(X \Psi_{2}\right)\right)
$$

Non-Associative !!

$$
M_{2}\left(M_{2}(A, B), C\right) \neq M_{2}\left(A, M_{2}(B, C)\right)
$$

How to Resolve?

(2014)

An A_{∞} / L_{∞}-algebra of the (super-)string products.

$$
\left(Q+M_{2}+M_{3}+\ldots\right)^{2}=0
$$

Seeking "Higher" procluct M_{3} satisfying

$$
M_{2}^{2}+\llbracket Q, M_{3} \rrbracket=0 \quad\left(\text { up to } O\left(\psi^{3}\right)\right)
$$

How to Resolve?

Seeking "Higher" procluct M_{3} satisfying

$$
\begin{gathered}
\left(Q+M_{2}+M_{3}+\ldots\right)^{2}=0 \quad \text { i.e. } \quad M_{2}^{2}+\llbracket Q, M_{3} \rrbracket=0 \\
M_{2}^{2}=\underbrace{}_{\mathrm{X}}+\frac{\mathrm{x}}{\mathrm{x}} \mathrm{~V}_{\mathrm{x}}
\end{gathered}
$$

Since $X=[[Q, \xi]]$, we can always construct

Higher Vertices as Regulators

We can construct "Higher" products $Q+M_{2}+M_{3}+M_{4}+\ldots$

$$
\text { satisfying }\left(Q+M_{2}+M_{3}+M_{4}+\ldots\right)^{2}=0
$$

Note that we used " ξ " but Theory is "small".

We impose $\quad\left[\left[\eta, M_{2}+M_{3}+\cdots\right]\right]=0$
\rightarrow Vertices $Q+M_{2}+M_{3}+M_{4}+\cdots \quad$ (Not unique)

Infinite Vertices Appear

Small-space Action for NS Superstring field theory

$$
S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{1}{3}\left\langle\Psi, M_{2}\left(\Psi^{2}\right)\right\rangle+\frac{1}{4}\left\langle\Psi, M_{3}\left(\Psi^{3}\right)\right\rangle+\frac{1}{5}\left\langle\Psi, M_{4}\left(\Psi^{4}\right)\right\rangle+\ldots
$$

Infinite Vertices $M_{2}+M_{3}+M_{4}+\ldots$ appear !!
(Interacting Point is the Mid Point !!)

Gauge Invariance $=$ Nilpotency of Vertices

$$
\left(Q+M_{2}+M_{3}+M_{4}+\ldots\right)^{2}=0
$$

2. NS-INS actions

A 'small-space' NS-INS action

Recall the construction of NS Superstring products . . .

Repeating this process, NS-INS products appear !!

A 'small-space' NS-INS products

How to obtain WZW-type NS-INS action?

NS-NS Action

$$
\begin{array}{ccc}
\text { Vertex Op. } & \text { String Field } & \left(\#_{\mathrm{gh}} \mid \#_{\mathrm{L}}, \#_{\mathrm{R}}\right) \\
\mathcal{V}(z, \bar{z})=\xi \bar{\xi} c \bar{c} e^{-\phi} e^{-\bar{\phi}} V_{m} & \longrightarrow & \Psi
\end{array}
$$

In the left \& right "large" Hillbert space. . .

$\langle A, B\rangle=0$ except for $\left(\#_{g h} \mid \#_{L}, \#_{R}\right)$ of $A+B=(3 \mid-1,-1)$
We can construct free action : $\quad S_{2}=\frac{1}{2}\langle\bar{\eta} \Psi, Q \eta \Psi\rangle$
\rightarrow Can we construct interacting terms ??

$$
\rightarrow \text { Pure-gauge . . . ? }
$$

Bosonic pure-gauge does not work well

We can construct a 'bosonic' pure-gauge

$$
\begin{aligned}
& \frac{\partial}{\partial t} \mathcal{G}_{\mathcal{B}}(t)=Q_{\mathcal{G}_{B}(t)}(\eta X \Psi) \quad \text { Gauge parameter ? } \\
\rightarrow & \text { Defining Eq. is NOT unique !? }
\end{aligned}
$$

Attempt : [Using a 'bosonic' pure-gauge]

$$
S=\int_{0}^{1} d t \int_{0}^{1} d \kappa\left\langle\eta \bar{\eta} \Psi, Q_{\mathcal{G}_{\mathcal{B}}(t)} \Psi\right\rangle
$$

\rightarrow Nonlinear Gauge Inv. is NOT clear. . .

Acld terms to be gauge inv.

Attempt : [Using a 'bosonic' pure-gauge]

$$
S=\int_{0}^{1} d t \int_{0}^{1} d \kappa\left\langle\eta \bar{\eta} \Psi, Q_{\mathcal{G}_{\mathcal{B}}(t)} \Psi\right\rangle
$$

+ appropriate terms
\rightarrow Gauge Inv. Action.

For example . . . O $\left(\psi^{3}\right)$

Attempt : [Using a 'bosonic' pure-gauge]

$$
S=\frac{1}{2}\langle\bar{\eta} \Psi, Q \eta \Psi\rangle+\frac{\kappa}{3!}\langle\bar{\eta} \Psi,[X Q \eta \Psi, \eta \Psi]\rangle+O\left(\kappa^{2}\right)
$$

+ appropriate terms :

$$
\frac{\kappa}{3 \cdot 3!}\langle\bar{\eta} \Psi, X[Q \eta \Psi, \eta \Psi]-2[X Q \eta \Psi, \eta \Psi]+[Q \eta \Psi, X \eta \Psi]\rangle
$$

\rightarrow Gauge Inv. Action !!

For example . . . $\mathrm{O}\left(\psi^{3}\right)$

Gauge invariant action :

$$
S=\frac{1}{2}\langle\bar{\eta} \Psi, Q \eta \Psi\rangle+\frac{\kappa}{3!}\left\langle\bar{\eta} \Psi,[Q \eta \Psi, \eta \Psi]^{L}\right\rangle+O\left(\kappa^{2}\right)
$$

where the new 3-product is clefined by

$$
[A, B]^{L}:=\frac{1}{3}(X[A, B]+[X A, B]+[A, X B])
$$

\rightarrow Similarly, we can obtain higher terms ...

But complicated !!

How to obtain a closed form expression ?

Note that $\eta \psi$ appears as a gauge parameter !!

$$
S=\frac{1}{2}\langle\bar{\eta} \Psi, \underline{Q \eta \Psi}\rangle+\frac{\kappa}{3!}\left\langle\bar{\eta} \Psi,\left[\underline{Q \eta \Psi,}, \underline{\underline{T}]^{L}}\right\rangle+O\left(\kappa^{2}\right)\right.
$$

- $\left(\#_{\mathrm{gh}} \mid \#_{\mathrm{pic}}{ }^{\mathrm{L}}, \#_{\mathrm{pic}}{ }^{\mathrm{R}}\right)$ of $\eta \psi=(1 \mid-1, \mathrm{O})$
\rightarrow Gauge parameter \wedge of small-space NS theory
\rightarrow We can use a 'small-space' NS pure-gauge !!

A 'small-space' NS pure-qauge
$\mathrm{N}=1$ "small"-space action

$$
S=\frac{1}{2}\langle\Phi, Q \Phi\rangle+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{(n+2)!}\left\langle\Phi,\left[\Phi^{n}, \Phi\right]^{L}\right\rangle
$$

which is inv. uncler the gauge transf.

$$
\delta \Phi=Q \Lambda+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{n!}\left[\Phi^{n}, \Lambda\right]^{L}
$$

\longrightarrow Same as bosonic theory. . (L_{∞}-relations hold!!!)
The pure-gauge is a solution of the clifferential eq.

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathcal{G}(t) & =Q \Lambda+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{n!}\left[\mathcal{G}(t)^{n}, \Lambda\right]^{L} \\
& =Q_{\mathcal{G}(t)} \Lambda
\end{aligned}
$$

NS pure-gauge gives the previous terms!!

Our Answer to Q : How to make $N=2$ action?

1. Consider a "small"-space NS pure-gauge .

$$
\frac{\partial}{\partial t} \mathcal{G}_{L}(t)=Q_{\mathcal{G}_{L}(t)} \Lambda \quad \Lambda \in \operatorname{Ker}[\eta]
$$

2. Iclentify "large"-space NS-NS string fields ψ
with "smal" "space NS gauge parameters \wedge.

$$
\eta \Psi=\Lambda_{(1 \mid-1,0)}
$$

Then, we obtain the NS-INS action.

$$
S=\int_{0}^{1} d t\left\langle\bar{\eta} \Psi, \mathcal{G}_{L}(t)\right\rangle \ldots \text { WZW-like !! }
$$

Action for "large"-space NS-INS SFT

WZW-like INS-INS Action

$$
S=\frac{2}{\alpha^{\prime}} \int_{0}^{1} d t\left\langle\bar{\eta} \Psi_{t}, \mathcal{G}_{L}(t)\right\rangle
$$

Defining equations

$$
\begin{gathered}
\frac{\partial}{\partial \tau} \mathcal{G}_{L}(\tau \eta \Psi)=Q_{\mathcal{G}_{L}}(\eta \Psi) \\
\frac{\partial}{\partial \tau} \Psi_{\mathbb{X}}=(-1)^{\mathbb{X}} \mathbb{X} \Psi+\kappa\left[\eta \Psi, \Psi_{\mathbb{X}}\right]^{L}
\end{gathered}
$$

Familiar WZW form

$$
\left.S\right|_{\Psi(t)=t \Psi}=\frac{1}{\alpha^{\prime}}\left(\left\langle\Psi_{\bar{\eta}}, \mathcal{G}_{L}\right\rangle+\kappa \int_{0}^{1} d t\left\langle\Psi_{t},\left[\Psi_{\bar{\eta}}(t), \mathcal{G}_{L}(t)\right]_{\mathcal{G}_{L}}^{L}\right\rangle\right)
$$

Equation of motion

$$
\bar{\eta} \mathcal{G}_{L}=\int_{0}^{1} d \tau\left(\eta \bar{\eta} Q_{\mathcal{G}_{L}} \Psi\right)=0
$$

Nonlinear gauge invariance

Variation of action (t - inclepenclent !!)

$$
\begin{aligned}
\delta S & =\int_{0}^{1} d t\left(\left\langle\delta \Psi_{t}, \bar{\eta} \mathcal{G}_{L}(t)\right\rangle+\left\langle\Psi_{t}, \delta\left(\bar{\eta} \mathcal{G}_{L}(t)\right)\right\rangle\right) \\
& =\int_{0}^{1} d t \partial_{t}\left\langle\Psi_{\delta}(t), \bar{\eta} \mathcal{G}_{L}(t)\right\rangle=\left\langle\Psi_{\delta}, \bar{\eta} \mathcal{G}_{L}\right\rangle
\end{aligned}
$$

$\bar{\eta} \mathcal{G}_{L}$ is a $Q_{\mathcal{G}_{L}}, \eta_{-}$, and $\bar{\eta}$-exact state

Nonlinear gauge transformation

$$
\Psi_{\delta}=Q_{\mathcal{G}_{L}} \Lambda+\bar{\eta} \Omega\left(+\eta \Omega^{\prime}\right)
$$

Field redefinition

$$
\widetilde{\Omega} \equiv \Omega^{\prime}+\frac{\kappa}{2}[\eta \Psi, \widetilde{\Omega}]^{L}+\ldots
$$

Linear transf.

$$
\delta_{\eta} \Psi=\eta \widetilde{\Omega}
$$

Solving the inverse, we fincl. . .

$$
\delta_{\Omega} \Psi=\bar{\eta} \Omega+\frac{\kappa}{2}[\eta \Psi, \bar{\eta} \Omega]^{L}+\frac{\kappa^{2}}{3}[\bar{\eta} \Omega, Q \eta \Psi, \eta \Psi]^{L}+\frac{\kappa^{2}}{12}[[\bar{\eta} \Omega, \eta \Psi], \eta, \Psi]^{L}+O\left(\kappa^{3}\right)
$$

So , ...

in the NS-NS sector , . . .

A 'large-space' INS-INS action is given by

A 'small-space' NS-NS action is given by

Bosonic string procluct
(NS, -) string product

3. Gauge fixing of WZW-like actions

Strategy

WZW-like actions

Partial Gauge Fixing
A_{∞} / L_{∞}-type actions
(Classical BV ... OK!)

Relation between 'small' and 'large' actions

Large-space Actions for NS \& NS-INS

$$
S_{2}=\frac{1}{2}\langle\eta V, Q V\rangle
$$

Partial Gauge Fixing

$$
V=\xi \Phi
$$

Small-space Actions for NS \& NS-NS

$$
S_{2}=\frac{1}{2}\langle\xi \Phi, Q \Phi\rangle=\frac{1}{2}\langle\Phi, Q \Phi\rangle_{\mathrm{small}}
$$

- Q-gauge sym.

3-point Interaction

Large-space Actions for NS

$$
S=\frac{1}{2}\langle\eta V, Q V\rangle+\frac{\kappa}{3!}\langle\eta V,[Q V, V]\rangle
$$

- Q-gauge sym.
- η-gauge sym.

Partial Gauge Fixing (up to $O\left(\phi^{3}\right)$)

$$
V=\xi \Phi+\frac{\kappa}{3!} \xi[\xi \Phi, \Phi]+\mathcal{O}\left(\kappa^{2}\right)
$$

Small-space Actions for NS \& NS-INS

$$
S=\frac{1}{2}\langle\xi \Phi, Q \Psi\rangle+\frac{\kappa}{3!}\langle\xi \Phi,[X \Phi, \Phi]\rangle
$$

- Q-gauge sym.

4-point Interaction

Large-space NS Actions

$$
S=\int_{0}^{1} d t\langle\eta V, \mathcal{G}(t V)\rangle
$$

- Q-gauge sym.
- η-gauge sym.

Partial Gauge Fixing (up to $O\left(\phi^{4}\right)$)

$$
\begin{aligned}
& V= \xi \Phi+\frac{\kappa}{3!} \xi[\xi \Phi, \Phi] \\
&+\frac{\kappa^{2}}{4!}(\xi[\xi \Phi,(Q \xi+X) \Phi, \Phi]+\xi[\xi[\Phi, \Phi], \xi \Phi] \\
&\left.+\frac{2}{3} \xi[\xi[\xi \Phi, \Phi], \Phi]+\frac{2}{3}[\xi[\xi \Phi, \Phi], \xi \Phi]\right)
\end{aligned}
$$

Small-space NS Actions

$$
S=\frac{1}{2}\langle\Phi, Q \Phi\rangle+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{(n+2)!}\left\langle\Phi,\left[\Phi^{n}, \Phi\right]^{L}\right\rangle \quad \text { - Q-gauge sym. }
$$

For example, in the INS-INS sector . . .

Large-space NS-INS Action

- Q-gauge sym.

$$
S=\frac{2}{\alpha^{\prime}} \int_{0}^{1} d t\left\langle\bar{\eta} \Psi_{t}, \mathcal{G}_{L}(t)\right\rangle
$$

- η-gauge sym.
- $\bar{\eta}$-gauge sym.
$1^{\text {st }} . \quad \eta$ - Gauge Fixing

$$
\Psi=\xi \bar{V} \quad \bar{V} \in \operatorname{Ker}[\eta]
$$

Small-space NS-INS Action

$$
S=\frac{1}{2}\langle\Phi, Q \Phi\rangle+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{(n+2)!}\left\langle\Phi,\left[\Phi^{n}, \Phi\right]^{L}\right\rangle \quad \text { - Q-gauge sym. }
$$

For example, in the INS-INS sector . . .

Large-space NS-INS Action

$$
S=\frac{2}{\alpha^{\prime}} \int_{0}^{1} d t\left\langle\bar{\eta} \Psi_{t}, \mathcal{G}_{L}(t)\right\rangle
$$

- Q-gauge sym.
- $\bar{\eta}$-gauge sym.
$1^{\text {st. }} \quad \eta$-Gauge Fixing: $\Psi=\xi \bar{V}$ 2nd. Partial $\bar{\eta}$-Gauge Fixing (up to $O\left(\phi^{4}\right)$)

$$
\begin{aligned}
\bar{V} & =\bar{\xi} \Phi+\frac{\kappa}{3!} \bar{\xi}[\bar{\xi} \Phi, \Phi]^{L}+\frac{\kappa^{2}}{4!}\left(\bar{\xi}[\bar{\xi} \Phi,(Q \bar{\xi}+X) \Phi, \Phi]^{L}\right. \\
& \left.\left.+\bar{\xi}\left[\bar{\xi}[\Phi, \Phi]^{L}, \bar{\xi} \Phi\right]^{L}+\frac{2}{3} \bar{\xi}\left[\bar{\xi}[\bar{\xi} \Phi, \Phi]^{L}, \Phi\right]+\frac{2}{3}[\bar{\xi} \mid \bar{\xi} \Phi, \Phi], \bar{\xi} \Phi\right]^{L}\right)
\end{aligned}
$$

Small-space NS-INS Actions

$$
S=\frac{1}{2}\langle\Phi, Q \Phi\rangle+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{(n+2)!}\left\langle\Phi,\left[\Phi^{n}, \Phi\right]^{L}\right\rangle
$$

- Q-gauge sym.

Up to O $\left(\phi^{4}\right)$

Witten's Cubic Theory

Witten

Small-space theory (A_{∞} / L_{∞}-type actions)	Large-space theory (WZW-type actions)
NS open	NS open Berkovits 95 ${ }^{\text { }}$
NS closed	NS closed
	Berkovits, Okawa, Zwiebach 04
NS-NS closed	NS-INS closed
Erler, Konopka, Sachs 14^{\prime}	H.M 14'

Gauge fixing . . . OK
Gauge fixing . . . OK

How to obtain a closed form expression ?

Construction of a cyclic A_{∞} / L_{∞}-isomorphism

- Let $(S(H), L, \omega)$ and ($\left.S(H)^{\prime}, L^{\prime}, \omega^{\prime}\right)$ be cyclic L_{∞}-algebras. L_{∞}-morphism : A morphism of coalgebra $f: S(H) \rightarrow S(H)^{\prime}$

$$
\text { satisfying } f L=L^{\prime} f .
$$

Cyclic L_{∞}-morphism : L_{∞}-morphism f satisfying

$$
\begin{aligned}
& \omega(A, B)=\omega^{\prime}\left(f_{1}(A), f_{1}(B)\right) \text { and } \\
& \Sigma \omega^{\prime}\left(f_{j}\left(A_{1}, A_{j}\right), f_{k}\left(B_{1}, B_{k}\right)\right)=0 .
\end{aligned}
$$

$\rightarrow \quad f$ preserve the Equation of Motion !!

Consicler two EOMs

$$
\begin{gathered}
A_{\infty} / L_{\infty} \text {-type EOM } \\
\left(Q+L_{2}+L_{3}+\ldots\right) e^{\wedge \phi}=0 \\
L \\
L e^{\wedge \phi}=0 \\
-L_{\infty} \text {-algebra - } \\
\left(Q+L_{2}+L_{3}+\cdots\right)^{2}=0
\end{gathered}
$$

WZW-type EOM

$$
Q_{q} \psi_{\eta}=0
$$

- Trivial L_{∞}-algebra -

$$
\left(Q_{q}+O+\cdots\right)^{2}=0
$$

Find a isomorphism satisfying

$$
f L=Q_{q} f .
$$

Such a ' f ' exists.

$$
f=e^{\int c l t[v,] g} e^{\int d t E} \quad(\text { path-ordered exponential })
$$

- 三 is the gauge products of Erler-Konopka-Suchs.

$$
L=\left(e^{\int d t E}\right)^{\dagger} Q e^{\int d t E} \quad e^{\int d t I}\left(e^{\int d t E}\right)^{\dagger}=1=\left(e^{\int d t E}\right)^{\dagger} e^{\int d t E}
$$

- $E:=e^{\int d t[v,] g}$ is clefined by $\partial_{t} E(t)=[V, E(t)]_{q(t)}$.

$$
Q_{q}=e^{\int d t[v,]_{g}} Q\left(e^{\int d t[v,]_{q}}\right)^{\dagger} \quad E E^{\dagger}=1=E^{\dagger} E
$$

$$
f L=E Q e^{\int d t E}=\left(E Q E^{\dagger}\right)\left(E e^{\int d t E}\right)=Q_{q} f
$$

' f ' gives partial gauge fixing conclitions.
In the actions, $\mathbf{f}=\mathbf{e}^{\int \mathrm{dlt}[v,] g} \mathbf{e}^{\int c \mathrm{ct} \equiv}$ gives

$$
\int \operatorname{clt}\left(e^{\int d t[v,] g}\right)^{\dagger} \eta V=e^{\int d t \equiv} e^{\wedge \phi}
$$

Solving this relation with $V=\xi \eta \vee$, we obtain

$$
\begin{aligned}
V=\xi \Phi & +\frac{\kappa}{3!} \xi[\xi \Phi, \Phi]+\frac{\kappa^{2}}{4!}(\xi[\xi \Phi,(Q \xi+X) \Phi, \Phi]+\xi[\xi[\Phi, \Phi], \xi \Phi] \\
& \left.+\frac{2}{3} \xi[\xi[\xi \Phi, \Phi], \Phi]+\frac{2}{3}[\xi[\xi \Phi, \Phi], \xi \Phi]\right)+\ldots
\end{aligned}
$$

Summary

NS and NS-NS sector of Superstring field theories

- Consistent gauge-inv. NS-INS "large"-space action also exists!

WZW-like NS-INS action

- Relation between "small"- and "large"- space theories

Cyclic A_{∞} / L_{∞}-isomorphism
WZW-type $\longmapsto A_{\infty} / L_{\infty}$-type
Equivalence of two actions
Partial gauge fixing conclitions appear !!

Differential Eq. gives "Pure-gauge"

Recall the gauge transf. $\delta \Psi=Q_{\Psi} \Lambda=Q \Lambda+\llbracket \Psi, \Lambda \rrbracket$

$$
\text { Shifted BRST op. } Q_{\Psi}=Q+\llbracket \Psi, \rrbracket \text { appears!! }
$$

Pure-gauge : successive infinitesimal gauge transf. around itself

Space of string fields

Differential Eq. gives "Pure-gauge"

Recall the gauge transf. $\delta \Psi=Q_{\Psi} \Lambda=Q \Lambda+\llbracket \Psi, \Lambda \rrbracket$

$$
\text { Shifted BRST op. } Q_{\Psi}=Q+\llbracket \Psi, \rrbracket \text { appears!! }
$$

Pure-gauge : successive infinitesimal gauge transf. around itself

$$
\begin{aligned}
\mathcal{G}(t \Lambda+d t \Lambda)-\mathcal{G}(t \Lambda) & =Q(d t \Lambda)+\llbracket \mathcal{G}(t \Lambda), d t \Lambda \rrbracket \\
& =Q_{\mathcal{G}(t \Lambda)}(d t \Lambda)
\end{aligned}
$$

$$
\text { The Defining Eq. of Pure-gauge : } \quad \frac{\partial}{\partial t} \mathcal{G}(t \Lambda)=Q_{\mathcal{G}(t \Lambda)} \Lambda
$$

For example . . .

$$
\begin{aligned}
\partial_{t} e^{-t \Lambda} Q e^{t \Lambda} & =-\Lambda\left(e^{-t \Lambda} Q e^{t \Lambda}\right)+e^{-t \Lambda} Q\left(e^{t \Lambda} * \Lambda\right) \\
& =Q \Lambda+\llbracket e^{-t \Lambda} Q e^{t \Lambda}, \Lambda \rrbracket
\end{aligned}
$$

Familiar Pure-gauge field $e^{-\Lambda} Q e^{\Lambda}$ is a solution of
the Defining Eq. of Pure-gauge $\frac{\partial}{\partial t} \mathcal{G}(t \Lambda)=Q_{\mathcal{G}(t \Lambda)} \Lambda$!!

In the rest, "Pure-gauge" means "a solution of this Eq." .

Bosonic closed String Field Theory

Zwiebach's Action :

L_{∞} - algebra appears !!

$$
S=\frac{1}{2}\langle\Psi, Q \Psi\rangle+\frac{\kappa}{3!}\langle\Psi,[\Psi, \Psi]\rangle+\sum_{n=3}^{\infty} \frac{\kappa^{n}}{(n+1)!}\left\langle\Psi,[\Psi, \ldots, \Psi]_{n}\right\rangle
$$

Gauge transf. :

$$
\begin{aligned}
\delta \Psi & =Q \Lambda+\kappa[\Psi, \Lambda]+\frac{\kappa^{2}}{2}[\Psi, \Psi, \Lambda]+\frac{\kappa^{3}}{3!}[\Psi, \Psi, \Psi, \Lambda] \ldots \\
& =Q_{\Psi} \Lambda
\end{aligned}
$$

Generator: Shifted BRST

$$
Q_{\Psi} \Lambda=Q \Lambda+\sum_{n=1}^{\infty} \frac{\kappa^{n}}{n!}\left[\Psi^{n}, \Lambda\right]
$$

